

FOREWORD

Our communities today depend heavily on the continuity of water and sewerage systems in both the domestic and industrial fields.

For any application, an engineer requires a pipeline which will meet operating conditions without undue risk of damage or failure. These conditions embrace the flow requirements, operating pressure, external loads due to earth pressure, transient loads due to vehicles as well as risks of damage during handling, transport and installation.

The inherent properties of ductile iron combined with easily applied corrosion protection systems ensure that ductile iron pipelines provide solutions to the widest range of conditions encountered in water supply systems, as well as many other industry applications.

SCOPE

Ductile iron pipelines are used for the transmission of water, wastewater, drainage, effluents, slurries and various other fluids.

This manual deals essentially with water industry applications. It has been compiled to assist pipeline designers, specifiers and operators.

It is not intended to be a comprehensive treatise on all aspects of ductile iron pipeline design but a compendium of information, data, useful guidelines and procedures.

VIADUX - FORMERLY TYCO WATER

Tyco Water now trades as Viadux one of Australia's leading suppliers of ductile iron pipeline systems. Tyco Water provided premium pipeline products and services to the market.

Our focus on, and commitment to, the water industry is stronger than ever thus ensuring that the level of service our customers have grown to expect is not only maintained but exceeded under our new name Viadux.

MANUFACTURING AND SOURCING

Viadux sources DI pipes and fittings manufactured in accordance to its strict quality control procedures from approved suppliers.

All manufacturing facilities manufacture to relevant International and Australian Standards under systems accredited to AS/NZS ISO 9001.

QUALITY ASSURANCE

Viadux's Quality Systems have been assessed and accredited to ISO 9001 by an independent authority, SAI Global. As part of the Supplier Assessment Scheme, each manufacturing facility is also required to partake in independent Quality Management Systems and Product Certification assessments. Certification is accredited by reputable independent authorities. Documented procedures are followed for all aspects of a plant's operation from receipt of order through design, purchasing, manufacture, inspection and delivery. Adherence to these procedures is determined

by internal Quality Assurance audits conducted by trained auditors.

To consistently satisfy our customers' expectations, Viadux places great importance on the maintenance of product quality through the operation of Quality Systems in accordance with ISO 9001.

Viadux is committed to continuous improvement through its 'Operational Excellence' philosophy and deployment of Six Sigma, Lean and DFSS principles throughout the company. This involves employees at all levels and disciplines in the operations.

DUCTILE IRON PIPELINE SYSTEMS

CONTENTS

COMPONENT DATA

TECHNICAL SPECIFICATION DATA	10
Standards / Class Designation / Minimum Wall Thickness Tolerance on Outside Diameter / Pipe Lengths / Tolerance on Straightness of Spun Pipes / Tolerance on Mass / Mechanical Properties / Hardness	10
Works Proof and Leak Tightness Test Pressures / Lining / Coating / Inspection / Marking	12
PIPE DATA	14
Class K9 Push-in Flexible Ductile Iron Pipe Class K12 Push-in Flexible Ductile Iron Pipe Flanged Joint Pipe	14 15 16
PIPE FLOW FRICTION CHART	17
Class K9 Push-in Flexible Ductile Iron Pipelines. Cement Lined	17
JOINT DATA	18
Push-in Flexible Push In Joints	18

DUCUUN FUEVIDUE TOINT DIDELINE FITTINGS	2.0
PUSH-IN FLEXIBLE JOINT PIPELINE FITTINGS	22
est and Operating Pressures /	
ush-in Flexible Fittings Dimensions	22
ush-in Flexible Bends / Socket - Socket	23
ush-in Flexible Tees / Socket - Socket x Socket	24
ush-in Flexible Tees / Socket - Socket x Flange	25
ush-in Flexible Tees / Invert Scour	26
ush-in Flexible Caps	26
ush-in Flexible Connectors /	
ush-in Flexible Tapers	27
WANGED JOINE DIDELING STEELINGS	
LANGED JOINT PIPELINE FITTINGS	28
langed Bends	28
langed Tees	29
langed Tapers	30
langed Duckfoot Bends / Flanged Bellmouths /	
uddle Flanges	3
•	

DESIGN GUIDELINES

PIPES BUILT INTO STRUCTURES	33
Water Barrier / Anchorage / Flexibility	33
ANCHORAGE OF PIPELINES	34
Static Thrusts / Anchor Blocks Bulkheads Poor Ground Conditions	34 35 36
AGGRESSIVE GROUND CONDITIONS	36
Corrosive Environments / Assessment Systems Loose Polyethylene Sleeving	36 37
ABOVE GROUND PIPELINES	38
Push-in Flexible Pipelines Flanged Joint Pipelines Fixing Details	38 39 39

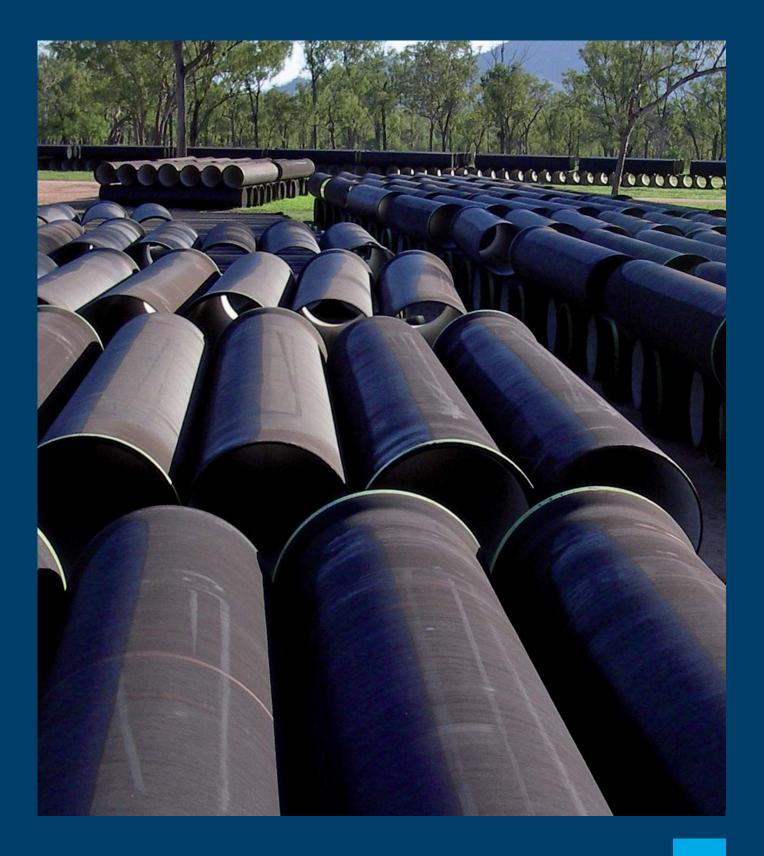
This manual has been prepared for Viadux Pty Ltd ('the Company') to assist qualified engineers and contractors in the specification and use of the Company's product, and is not intended to be an exhaustive statement on pipeline design, installation or technical matters. Any conclusions, formulae and the like contained in the manual represent estimates only and may be based on assumptions which, while reasonable may not necessarily be correct for every installation

Successful installation depends on numerous factors outside the Company's control, including site preparation and installation workmanship. Users of this manual must check technical developments from research and field experience, and rely on their knowledge, skill and judgement, particularly with reference to the qualities and suitability of the products and conditions surrounding each specific installation.

The Company disclaims all liability to any person who relies on the whole or any part of this manual and excludes all liability for the consequences of any action taken or omitted to be taken by any person as a consequence of anything in or omitted in this manual.

The Company reserves the right to institute changes in materials, designs and specifications without notice in keeping with the Company's policy of continuing product improvement.

The manual is not an offer to trade and shall not form any part of the trading terms in any transaction. The Company's trading terms contain specific provisions which limit the liability of the Company to the cost of replacing or repairing any and defective product.


HANDLING AND INSTALLATION

HANDLING RECOMMENDATIONS	40
Transportation / Unloading 41 Pipe Stacking	42
TRENCHING	43
Depth of Cover	43
JOINTING AND ASSEMBLY	44
Jointing Instructions for Push-in Flexible Pipe Jointing Instructions for Flanged Joints / Cutting of Pipes Preparation of Spigots on Site Methods of Assembly for	44 45 46
Push-in Flexible Pipes and Fittings APPLICATION OF LOOSE	47
POLYETHYLENE SLEEVING	48
'POLYBOSS' Specification Pipeline Sleeving Procedure Sleeving Fittings	48 49 50
BACKFILLING	51
Trench Types	51
PIPELINE PRESSURE TESTING	52
Hydrostatic Testing / Air Testing of Water Mains	52
COMMISSIONING WATER PIPELINES	52
METRIC UNITS	53
Common Approximate Conversions Useful Metric Units with Imperial Conversions	53 53

DUCTILE IRON PIPELINE SYSTEMS

COMPONENT DATA

TECHNICAL SPECIFICATION DATA

STANDARDS

THE MAJOR REFERENCE STANDARDS FOR THE DESIGN OR SPECIFICATION OF DUCTILE IRON PIPELINES ARE LISTED BELOW.

BS EN 545

Ductile iron pipes, fittings, accessories and their joints for water pipelines.

BS EN 598

Ductile iron pipes, fittings, accessories and their joints for sewerage applications.

BS ISO 2531

Ductile iron pipes, fittings and accessories for pressure pipelines. ISO 4179

Ductile iron pipes and fittings

for pressure and non-pressure pipelines - Cement mortar lining.

ISO 8179-1

Ductile iron pipes - External zinc-based coating - Metallic zinc with finishing layer

CLASS DESIGNATION

Class designation is related to wall thickness only and the system of notation follows that established in BS ISO 2531: Ductile Iron Pipes and Fittings for Pressure Pipelines. The nominal pipe wall thickness is determined as a function of the nominal diameter by the formula

a = K (0.5 + 0.001 DN)

where

is the nominal wall thickness in a millimetres

DN is the nominal pipe size

K is the coefficient selected from a series of whole numbers ... 9,12, which corresponds to the class of pipe K9, etc.

Increases in pipe wall thickness are obtained by modification to

the internal diameter, the external diameter remaining constant for each nominal size of

The nominal wall thickness for Class 40 pipes is given as a function of the nominal size.

MINIMUM WALL THICKNESS

Minimum wall thicknesses are as follows.					
Type of Casting	Minimum Wall Thickness				
Pipes centrifugally cast in metal moulds	a - (1.3 + 0.001DN)				
Pipes centrifugally cast Class 40	<_5.0mm: -1.3 > 5.0mm: a · (1.3 + 0.001DN)				
Pipes & fittings cast in sand moulds	a - (2.3 + 0.001DN)				
DN is the nominal size in millimetres. 'a' is the nominal wall thickness in millimetres. No limit for the plus tolerance has been set.					

In-line dimensional checking

TOLERANCE ON OUTSIDE DIAMETER

The tolerance on the outside diameter of Push-in Flexible pipes is as follows.

Nominal Diameter	O.D. Tolerance		
DN	mm		
80 – 150	+1.0, -2.7 to 2.9		
200 – 350	+1.0, -3.0 to 3.4		
400 – 500	+1.0, -3.5 to 3.8		
600 – 800	+1.0, -4.0 to 4.5		

This tolerance is limited to a distance of 4 metres from the spigot end of a standard 5.5m pipe.

PIPE LENGTHS

PUSH-IN FLEXIBLE PIPE

The standard manufacturing length of a spigot and socket pipe provides an effective length of 5.5m when laid.

The tolerance on the standard manufacturing length of pipes is

± 30mm.

All pipes from which test bars have been cut are accepted by

the purchaser as complete lengths. Such pipes are not shorter than

the standard length by more than 100mm and do not number more than 10% of the total number of pipes in one order.

FLANGED JOINT PIPE

Pipe flanged at both ends is available up to a maximum length of 5.35m. The tolerance on pipe with flanged ends is \pm 5mm.

TOLERANCE ON STRAIGHTNESS OF SPUN PIPES

Pipes shall be straight with a maximum deviation of 0.125% of their length.

TOLERANCE ON MASS

The permitted tolerances on the standard masses for pipes centrifugally cast in metal moulds are as follows.

Nominal Size	Tolerance
Up to DN 200	
inclusive	±8%
Above DN 200	±5%

HARDNESS

When tested in accordance with the Standard, the Brinell hardness of the outside surface of the pipe is not to exceed 230 and the Brinell hardness of the outside of fittings is not to exceed 250.

MECHANICAL PROPERTIES

The tensile test is in accordance with the requirements of the Standard.

Type of Casting	Nominal Size	Minimum Tensile Strength MPa	Minimum 0.2% Proof Stress MPa	Minimum Breaking Elongation %
Pipes centrifugally cast in metal moulds	80 – 800	420	300	10
Pipes and fittings cast in sand moulds	80 – 800	420	300	5

The proof stress is only measured when specially agreed between the purchaser and manufacturer and is carried out under the conditions specified by the purchaser at the time of enquiry and order.

WORKS PROOF AND LEAK TIGHTNESS TEST PRESSURES

The hydrostatic test for Push-in Flexible pipes and fittings is carried out prior to lining and coating. The test pressure is maintained for 15 seconds to test for leak, sweat or other defects.

Nomi	inal Size	Works Hydrostatic Proof Test Pressure For Centrifugally Cast Ductile Pipe	Works Hydrostatic Leak Tightness Test Pressure for Ductile Iron Fittings	Works Hydrostatic Test Pressure for Pipes with Screv On Flanges		
DN		MPa	MPa	MPa	MPa	
80 -	- 300	5.0	2.5	2.5	3.2	
350	- 600	4.0	1.6	2.5	3.2	
700	- 800	3.2	1.0	2.5	3.2	

The hydrostatic test pressures specified in this table are intended primarily to detect casting flaws and bear no relation to the safe working pressures for the pipes or fittings. The application of higher test pressures to fittings is precluded owing to the risk of distortion resulting from the high restraining load which would have to be imposed on the fittings by the standard test apparatus.

LINING

When cement lining is specified by the purchaser, the mortar consists of well graded aggregate and cement in a ratio not exceeding 2:1, aggregate to cement. Water to cement ratio is the least that will produce a workable mortar mix depending on the mix proportions and the diameter of pipe to be lined.

The thickness of the sulphate resisting cement lining for all classes of pipe and fittings is as follows.

Nominal Size of Pipe or Fitting	Nominal Thickness	Tolerance Negative only given	Maximum Crack Width
DN	mm	mm	mm
80 – 300	4.0	-1.5	0.4
350 - 600	5.0	-2.0	0.5
700 – 800	6.0	-2.5	0.6

Unlined pipes are not internally coated unless specified by the purchaser.

COATING

Unless otherwise specified by the purchaser, all pipes are coated externally with metallic zinc covered by a finishing paint layer.

INSPECTION

Pipes and fittings are subject to a quality assurance system regularly audited by SAI Global.

If the purchaser wishes to inspect the pipes, such an inspection is undertaken at the works of the manufacturer. The equipment and labour necessary to carry out the inspection is provided by the manufacturer.

The inspector may witness the sampling, preparation and testing of the test pieces, checking of dimensions and weights and hydrostatic testing.

Should the purchaser or his representative not be present for the implementation of these operations at the time agreed, the manufacturer is entitled to proceed with the inspection without the urchaser or his representative being present.

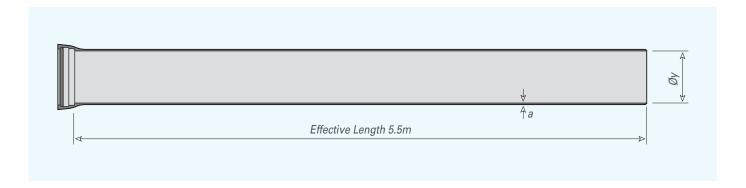
MARKING

Each pipeline component has the following marks legibly cast, stamped or painted on.

PIPFS

- 1 Viadux's identification.
- 2 Nominal size.
- 3 Class designation.
- 4 Year of manufacture.
- 5 Day cast.
- 6 Batch number.
- 7 Standards reference.

FITTINGS


- 1 Viadux's identification.
- 2 Nominal size.
- 3 Date of manufacture.
- 4 'Ductile' or 'DI'.
- 5 For bends, relevant angle.
- 6 Standards reference.

PIPE DATA

CLASS K9 PUSH-IN FLEXIBLE DUCTILE IRON PIPE (K = 9)

NORMAL APPLICATION

Flexible pressure pipelines carrying water, sewage and other liquids. For thickness of cement lining see page 12.

Iominal Mean External					Nominal	Allowable Operating	Allowable Maximum	Allowable	
Size	Diameter Øy	Mean Internal Diameter	Mass	Mean Internal Diameter	Mass	Wall Thickness a	Pressure*	Operating Pressure*	Site Test Pressure†
DN	mm	mm	kg	mm	kg	mm	MPa	MPa	MPa
80	98	86.0	70	78.0	82	6.0	6.4	7.7	9.6
100	118	106.0	86	98.0	101	6.0	6.4	7.7	9.6
150	170	158.0	128	150.0	150	6.0	6.4	7.7	9.6
200	222	209.4	177	201.4	207	6.3	6.2	7.4	7.9
250	274	260.4	235	252.4	272	6.8	5.4	6.5	7.0
300	326	311.6	297	303.6	342	7.2	4.9	5.9	6.4
350	378	362.6	375	352.6	449	7.7	4.5	5.4	5.9
400	429	412.8	450	402.8	535	8.1	4.2	5.1	5.6
450	480	462.8	531	452.8	629	8.6	4.0	4.8	5.3
500	532	514.0	613	504.0	719	9.0	3.8	4.6	5.1
600	635	615.2	805	605.2	931	9.9	3.6	4.3	4.8
700	738	716.4	1037	704.4	1214	10.8	3.4	4.1	4.6
800	842	818.6	1301	806.6	1503	11.7	3.2	3.8	4.3

Allowable Operating Pressure – Internal pressure, excluding surge, which the pipeline can safely withstand in permanent service.

^{**} Allowable Maximum Operating Pressure – Maximum internal pressure including surge, which the pipeline can safely withstand in service.

[†] Allowable Site Test Pressure – Maximum hydrostatic pressure applied on site to a newly installed pipeline, for a relatively short duration.

CLASS K12 PUSH-IN FLEXIBLE DUCTILE IRON PIPE (K = 12)

NORMAL APPLICATION

Flanged pressure pipe with screw-on flanges, specialised high pressure pipework and slurry lines. For wall thickness formula see page 10.

Nominal Sizo	Nominal Mean External Size Diameter	liomotor			Cement Lined		Allowable Operating Pressure*	Allowable Maximum Operating Pressure*	Allowable Site Test
Oizc	Øy	Mean Internal Diameter	Mass	Mean Internal Diameter	Mass	Wall Thickness a	i icasuic	operating Fressure	Pressure†
DN	mm	mm	kg	mm	kg	mm	MPa	MPa	MPa
80	98	84.0	80	76.0	92	7.0	6.4	7.7	9.6
100	118	103.6	102	95.6	116	7.2	6.4	7.7	9.6
150	170	154.4	162	146.4	184	7.8	6.4	7.7	9.6
200	222	205.2	230	197.2	260	8.4	6.4	7.7	9.6
250	274	256.0	305	248.0	342	9.0	6.4	7.7	9.6
300	326	306.8	388	298.8	432	9.6	6.4	7.7	9.6
350	378	357.6	487	347.6	560	10.2	6.4	7.7	9.6
400	429	407.4	585	397.4	669	10.8	6.1	7.3	7.8
450	480	457.2	691	447.2	785	11.4	5.7	6.8	7.3
500	532	508.0	800	498.0	904	12.0	5.5	6.6	7.1
600	635	608.6	1051	598.6	1176	13.2	5.1	6.1	6.6
700	738	709.2	1350	697.2	1524	14.4	4.8	5.8	6.3
800	842	810.8	1688	798.8	1888	15.6	4.6	5.5	6.0
>800 R	> 800 Refer to your Pentair Water Solutions representative								

CLASS 40 PUSH-IN FLEXIBLE JOINT DUCTILE IRON PIPE

NORMAL APPLICATION

Flexible pressure pipelines carrying water, sewage and other liquids. For thickness of cement lining see page 12.

Nominal	Mean External	Unline	:d	Cement Line	Cement Lined Nomina		Allowable Operating	Allowable Maximum	Allowable
Size	Diameter Øy	Mean Internal Diameter	Mass	Mean Internal Diameter	Mass	Wall Thickness a	Pressure*	Operating Pressure*	Site Test Pressure†
DN	mm	mm	kg	mm	kg	mm	MPa	MPa	MPa
00	118	108.4	71	100.4	88	4.8	6.4	7.7	8.2
150	170	160.0	109	152.0	134	5.0	6.2	7.4	7.8
200	222	211.2	154	203.2	189	5.4	5.0	6.0	6.5
250	274	262.4	204	254.4	247	5.8	4.3	5.1	5.6
300	326	313.6	259	305.6	311	6.2	4.0	4.8	5.3
350	378	364.0	346	354.0	421	7.0	4.0	4.8	5.3
400	429	413.4	435	403.4	520	7.8	4.0	4.8	5.3

Allowable Operating Pressure – Internal pressure, excluding surge, which the pipeline can safely withstand in permanent service.

^{**} Allowable Maximum Operating Pressure – Maximum internal pressure including surge, which the pipeline can safely withstand in service.

Allowable Site Test Pressure – Maximum hydrostatic pressure applied on site to a newly installed pipeline, for a relatively short duration.

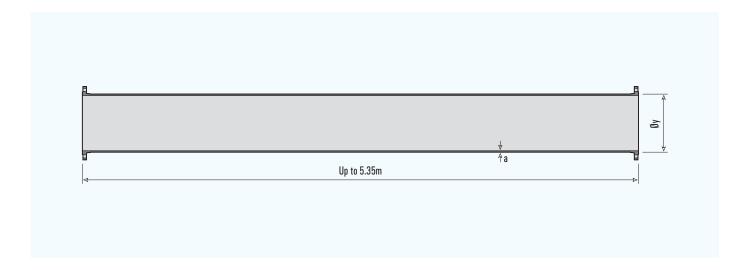
FLANGED JOINT PIPE

Screw-on flanged spun iron pipe has largely superseded statically cast flanged pipe and is now in world-wide general use.

Flanged joint pipe should not be used to support itself as a structure in pumping station pipework or similar. Sufficient support brackets should be used to prevent flanges taking moments due to self-weight.

PIPE BARRELS

Ductile iron pipe barrels are Class K12. Maximum length of pipe with screw-on flanges is 5.35m. Minimum length of double flanged pipe with screw-on flanges is as follows:


- a 150 mm for pipes of nominal size DN 80 to DN 150
- b 200 mm for pipes of nominal size DN 200 to DN 450
- c 250 mm for pipes of nominal size DN 500 to DN 600
- d 300 mm for pipes of nominal size DN 700 to DN 800

FLANGES

Pipe flanges manufactured from ductile iron may be PN16 or PN25.

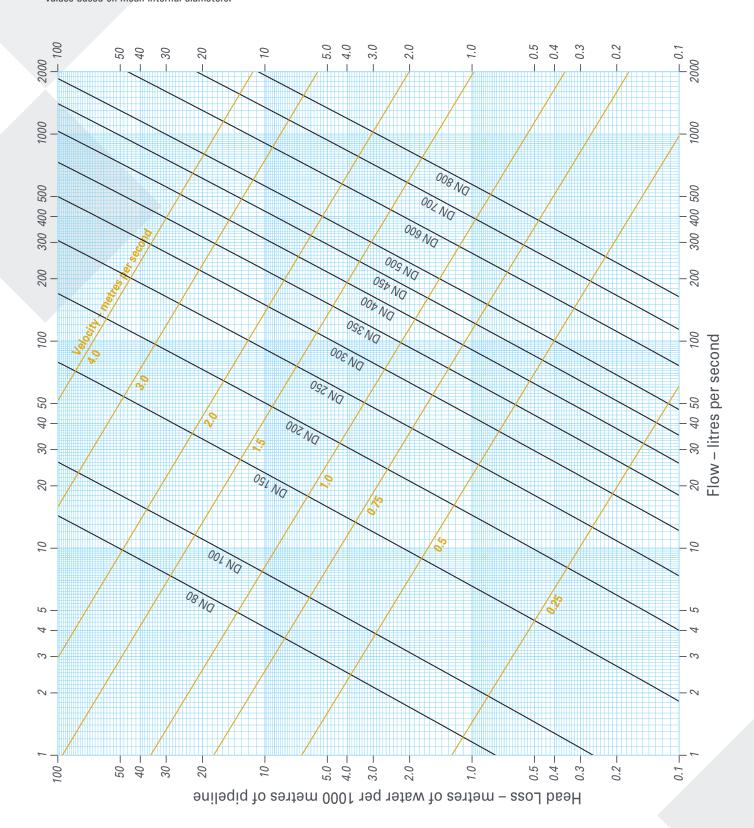
FLANGE THREAD SEALANT

An epoxy resin is used as the flange thread sealant. Unaffected by water, sewage and aqueous industrial waste, it cures to a hard clear corrosion resistant and corrosion protective solid. The resin is resistant to water absorption and will not impart colour, odour, taste or toxic constituents to potable water.

Nominal Size	Mean External	Unline	ed Cement Lined		Nominal Allowable Operating Wall Thicknessa Pressure*		Allowable N Operating F		Allowable Site Test Pressure†			
	Diameter Øy	Mean Internal Diameter	Mass per metre	Mean Internal Diameter	Mass per metre	a	PN16	PN25	PN16	PN25	PN16	PN25
DN	mm	mm	kg	mm	kg	mm	MPa	MPa	MPa	MPa	MPa	MPa
80	98	84.0	14.0	77.0	16.2	7.0	1.6	2.5	2.0	3.0	2.5	3.5
100	118	103.6	17.7	96.6	20.3	7.2	1.6	2.5	2.0	3.0	2.5	3.5
150	170	154.4	28.0	147.4	32.0	7.8	1.6	2.5	2.0	3.0	2.5	3.5
200	222	205.2	39.7	198.2	45.1	8.4	1.6	2.5	2.0	3.0	2.5	3.5
250	274	256.0	52.8	249.0	59.5	9.0	1.6	2.5	2.0	3.0	2.5	3.5
300	326	306.8	67.3	299.8	75.3	9.6	1.6	2.5	2.0	3.0	2.5	3.5
350	378	357.6	83.1	347.6	96.4	10.2	1.6	2.5	2.0	3.0	2.5	3.5
400	429	407.4	100.0	397.4	115.2	10.8	1.6	2.5	2.0	3.0	2.5	3.5
450	480	457.2	118.3	447.2	135.4	11.4	1.6	2.5	2.0	3.0	2.5	3.5
500	532	508.0	138.2	498.0	157.2	12.0	1.6	2.5	2.0	3.0	2.5	3.5
600	635	608.6	181.8	598.6	204.5	13.2	1.6	2.5	2.0	3.0	2.5	3.5
700	738	709.2	230.8	697.2	262.6	14.4	1.6	2.5	2.0	3.0	2.5	3.5
800	842	810.8	285.5	798.8	321.9	15.6	1.6	2.5	2.0		2.5	3.5

- * Allowable Operating Pressure
- Internal pressure, excluding surge, which the pipeline can safely withstand in permanent service.
- ** Allowable Maximum Operating Pressure
- Maximum internal pressure including surge, which the pipeline can safely withstand in service.
- † Allowable Site Test Pressure

Maximum hydrostatic pressure applied on site to a newly installed pipeline, for a relatively short duration.


PIPE FLOW FRICTION CHARTS

CLASS K9 DUCTILE IRON PIPELINES CEMENT LINED

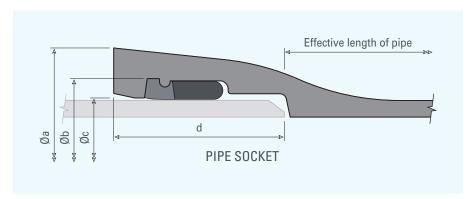
Colebrook-White coefficient

(k) = 0.03 mm.

Values based on mean internal diameters.

JOINT DATA

Push-in Flexible and Push-in Flexible are United States Pipe and Foundry Company trademarks and are registered as such in the United States Patent Office and some 45 other countries.

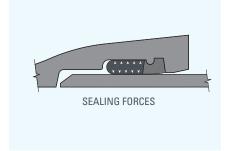

PUSH-IN FLEXIBLE PUSH-IN JOINTS

The Push-in Flexible push-in joint is an extremely strong and efficient flexible joint for water, sewerage, slurry and effluent pressure pipelines. It has a single jointing component which is a specially shaped rubber gasket, comprising a 'heel' of hardened rubber which locates in a groove in the pipe socket and a 'bulb' of softer rubber, firmly bonded to the 'heel', which effects the required seal. The joint is suitable for 'in ground' and 'above ground' pipelines.

The joint can be deflected and permits axial movement to compensate for thermal expansion and contraction. The leak-tightness of the Push-in Flexible push-in joint has been proven by exhaustive laboratory tests and confirmed by experience in the field.

Tests have been carried out on all sizes of joints used with Push-in Flexible pipe to pressures well in excess of twice recommended maximum working pressure for the pipeline. These tests were conducted on joints while deflected and offset. Vacuum tests have also been conducted at minus 700 mm of mercury (-0.93 bar / -9.5 metres head of water).

Anchorage must be provided at blank ends, tees and other changes of direction to prevent the withdrawal of the spigot end under the



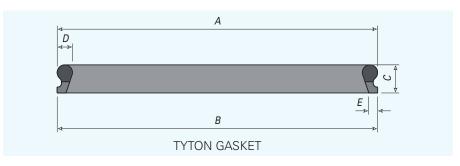
PUSH-IN FLEXIBLE JOINT DIMENSIONS MILLIMETRES						
Nominal Size	Dimensions			Allowable Spigot	Withdrawal	
					No Deflection	Full Deflection
DN	a	b	С	d	mm	mm
80	149.0	116.0	98.0	77	38	30
100	168.3	143.0	120.5	89	38	28
150	222.6	195.0	172.5	89	38	23
200	281.1	250.0	224.5	102	38	18
250	335.0	301.5	276.5	102	38	14
300	388.0	356.5	328.5	102	38	9
350	451.4	408.0	380.5	109	38	8
400	506.5	462.0	431.5	127	38	7
450	558.5	514.5	482.5	127	38	4
500	605.2	568.0	534.5	127	40	2
600	714.0	673.4	637.5	127	45	1
700	824.0	788.0	740.5	157	40	0
800	934.0	894.0	844.5	163	40	0
ffect of internal pressure. Details of support						

MAXIMUM ALLOWABLE PUSH-IN FLEXIBLE JOINT DEFLECTIONS						
Nominal Size	Allowable Joint Lateral Offset per Offset per 5.5m Metre of Pipe Barrel Lengths					
DN		mm	mm			
80 – 300	5° 87 479					
350 – 800	4°	70	385			

PUSH-IN FLEXIBLE GASKETS

Push-in Flexible gaskets are manufactured to 'Viadux Water Solutions's Specification for Push-in Flexible Gaskets' and take into account ISO, British and ASTM standards. Gaskets approved to the requirements of Viadux Water Solutions's specification carry the Push-in Flexible trademark.

Only Push-in Flexible trademarked gaskets should be used with ductile iron pipelines. The Push-in Flexible gasket is normally manufactured from EPDM synthetic elastomer compound complying with BS EN 681-1. 'Bulb' elastomers are primarily designed for environmental resistance and long term sealing performance. Long term sealing performance is related to 'stress relaxation', a measure over time of the maintenance of elastic properties of the elastomer.


'Heel' elastomers are designed for environmental resistance and the anchoring function.

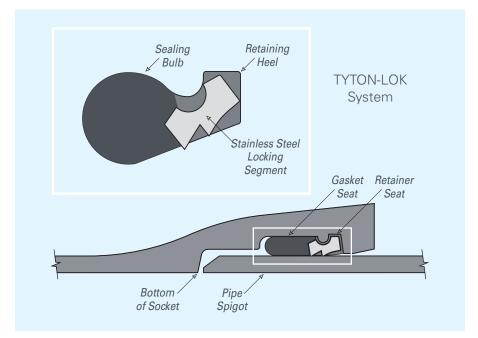
Viadux Water Solutions's Push-in Flexible EPDM gaskets are suitable for contact with drinking water in accordance with 'BS 6920 – Suitability of non-metallic products for use in contact with water intended for human consumption with regard to their effect on the quality of water.'

	PUSH-IN FLEXIBLE GASKET DIMENSIONS				
Nom. Size			Dimensions	3	
DN	Α	В	C	D	E
80	116	117	26	16	10
100	144	146	26	16	10
150	198	200	26	16	10
200	254	256	30	18	11
250	308	310	32	18	11
300	364	366	34	20	12
350	418	420	34	20	12
400	473	475	38	22	13
450	526	528	38	22	13
500	581	583	42	25	14

The extremely strong and efficient Push-in Flexible push-in joint

PUSH-IN FLEXIBLE (PUSH-IN FLEXIBLE GASKETS APPLICATION				
Application	Max. Service Temperature °C	Bulb Elastomer	Elastomer Designation		
Potable Water	80	Ethylene Propylene Rubber	EPDM		
Sewage ¹	80	Ethylene Propylene Rubber	EPDM		
Oils/Solvents ²	25	Nitrile Rubber	NBR		
Hot effluents – Water	80	Ethylene Propylene Rubber (peroxide)	EPDM		
Hot effluents		Fluoroelastomer	НК		
- Aromatic ²					
Notes: 1 Compounds do not incl	ude root inhibitor. 2 Specialist adv	rice required.			

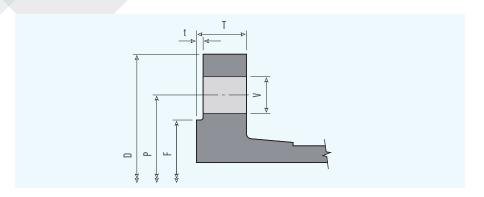
RESTRAINED JOINT SYSTEMS


A restrained joint system offers many advantages for the pipeline designer, amongst which are:

- ability to dispense with traditional concrete thrust blocks. This is especially important:
 - in congested service corridors where space is at a premium and future interference by other utilities can be contemplated.
 - when commissioning of a pipeline is urgent, as there is no need for delay until a concrete thrust block 'cures'.
 - in areas where the logistics of providing concrete are difficult.
 - capability of providing thrust restraint in poor soil conditions.
 - provision of an alternative to flanged joints in buried situations.
 - additional security for strategic mains.

PUSH-IN FLEXIBLE RESTRAINED JOINT SYSTEM

The Push-in Flexible gasket is based on the proven Push-in Flexible rubber ring joint system with one additional feature. By utilising stainless steel locking segments within the gasket itself, the Push-in Flexible gasket transforms the normal Push-in Flexible spigot and socket joint into a restrained joint.



WORKING PRESSURES

The Push-in Flexible system is available in sizes DN 80-DN 400 and is rated up to a recommended working pressure of 1.6 MPa. Refer to Viadux Water Solutions for more details

MAXIMUM ALLOWABLE PUSH-IN FLEXIBLE-LOK JOINT DEFLECTIONS						
Nominal Size DN Allowable Joint Deflection Lateral Offset per Metre of Pipe Barrel (mm) (mm)						
80 – 300 5° 87 479						
350 – 400	4°	70	385			

FLANGED JOINTS

Flanged joints are completely rigid and should not be used for applications where movement of the pipeline is expected, unless special provision is made to accommodate it by, for example, the inclusion of expansion joints.

A pipeline totally constructed from flanged pipework is considered to be self-anchoring and therefore external anchorages are not required at changes of direction and at blank ends.

The joint is used mainly for 'above ground' applications, e.g. pumping stations, water and sewage treatment plants and for industrial pipework.

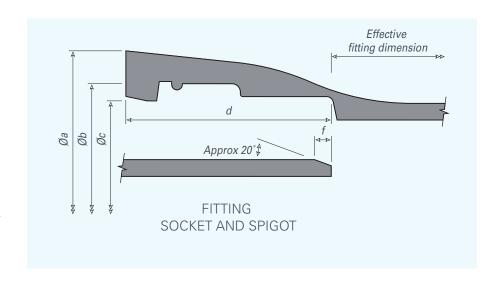
It is also used to facilitate the installation and removal of valves in spigot and socket pipelines and for valve by-pass arrangements.

Particular attention should be paid to pipelines where flanged joint pipe and fittings are to be combined with Push-in Flexible pipe and fittings. In this case, thrust blocks should not be omitted from flanged bends, tees and blank ends before ensuring that there is a sufficient anchoring length of flanged pipe in the ground to prevent the flanged joint and push-in joint sections separating at the change-over points due to the effects of internal pressure.

Flanges are attached to pipes by screwing the pipe and flange with mating threads. These are filled with a recommended epoxy resin before tightening to a predetermined torque. Machining of the flanges is carried out after tightening to ensure ends are parallel and flat. Screwed and integrally cast flanges are available on request. Flanges on fittings are integrally cast in sand moulds with the body of the fitting.

PN16 F	PN16 FLANGES							
Nominal	Flange Dim	ensions				Bolting Details		
Size	Diameter	Thickness	Diameter of Raised Face	Height of Raised Face	Pitch Circle Diameter	Number of Holes	Diameter of Holes	Fastener Size and Thread
DN	D	T	F	t	P	N	V	
80	200	19.0	132	3	160	8	19	M16
100	220	19.0	156	3	180	8	19	M16
150	285	19.0	211	3	240	8	23	M20
200	340	20.0	266	3	295	12	23	M20
250	400	22.0	319	3	355	12	28	M24
300	455	24.5	370	4	410	12	28	M24
350	520	26.5	429	4	470	16	28	M24
400	580	28.0	480	4	525	16	31	M27
450	640	30.0	548	4	585	20	31	M27
500	715	31.5	609	4	650	20	34	M30
600	840	36.0	720	5	770	20	37	M33
700	910	39.5	794	5	840	24	37	M33
800	1025	43.0	901	5	950	24	40	M36

PN25 F	PN25 FLANGES							
Nominal	Flange Dim	ensions				Bolting De	etails	
Size	Diameter	Thickness	Diameter of Raised Face	Height of Raised Face	Pitch Circle Diameter	Number of Holes	Diameter of Holes	Fastener Size and Thread
DN	D	T	F	t	P	N	V	
80	200	19.0	132	3	160	8	19	M16
100	235	19.0	156	3	190	8	23	M20
150	300	20.0	211	3	250	8	28	M24
200	360	22.0	274	3	310	12	28	M24
250	425	24.5	330	3	370	12	31	M27
300	485	27.5	389	4	430	16	31	M27
350	555	30.0	448	4	490	16	34	M30
400	620	32.0	503	4	550	16	37	M33
450	670	34.5	548	4	600	20	37	M33
500	730	36.5	609	4	660	20	37	M33
600	845	42.0	720	5	770	20	40	M36
700	960	46.5	820	5	875	24	43	M39
800	1085	51.0	928	5	990	24	49	M45


PUSH-IN FLEXIBLE JOINT PIPELINE FITTINGS

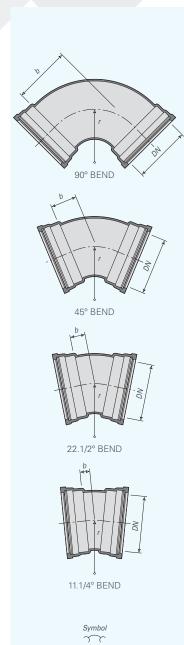
Push-in Flexible pipeline fitting dimensions shown are in accordance with the Standard. Double socketted fittings are normally used in Push-in Flexible pipelines.

Spigotted fittings may be used in some applications, although their use is mainly limited to installation after construction, where existing pipes are cut and connected to the fitting using couplings.

TEST AND OPERATING PRESSURES

Works hydrostatic leak tightness test pressures for fittings are shown on page 12. Allowable operating pressures for socketed ductile iron fittings are the same as for Class K9 ductile spun iron pipe in the corresponding nominal sizes.

PUSH-IN FLEXIBLE JOINT FITTINGS DIMENSIONS MILLIMETRES					
Nominal Size			Dimensions		
DN	a	b	С	d	f
80	149.0	116.0	98.0	77	10
100	168.3	143.0	120.5	89	10
150	222.6	195.0	172.5	89	10
200	281.1	250.0	224.5	102	10
250	335.0	301.5	276.5	102	10
300	388.0	356.5	328.5	102	10
350	451.4	408.0	380.5	109	10
400	506.5	462.0	431.5	127	16
450	558.5	514.5	482.5	127	16
500	605.2	568.0	534.5	127	16
600	714.0	673.4	637.5	127	16
700	824.0	788.0	740.5	157	20
800	934.0	894.0	844.5	163	20

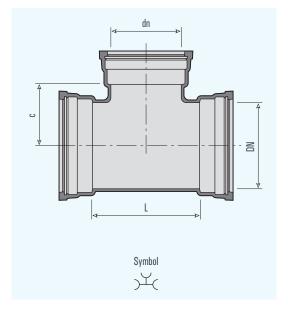

REMARKS

- In general, fittings will be supplied with Series A as standard dimension. If Series A dimension
 is not available for the fittings, those fittings will be supplied with Series B as standard
 dimension and are marked with a English character "B" in this catalogue for identification.
- 2. If the fittings are out of British Standard range, unless there is an agreement between the purchaser and seller, manufacturer's design length will be supplied as standard dimension and are marked with a English character "M" in this catalogue for identification.
- 3. By agreement between the purchaser and seller, special size fittings may be supplied

PUSH-IN FLEXIBLE BENDS SOCKET - SOCKET

Nominal Size	Dimension
DN	b
90° BENDS	
80	100
100	120
150	170
200	220
250	270
300	320
350	370
400	420
450	470
500	520
600	620
700	720
800	820

Nominal Size	Dimension
DN	b
22½° BENDS	
80	40
100	40
150	55
200	65
250	75
300	85
350	95
400	110
450	120
500	130
600	150
700	175
800	195

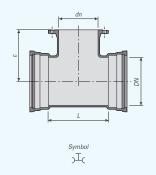


Nominal Size	Dimension
DN	b
45° BENDS	
80	55
100	65
150	85
200	110
250	130
300	150
350	175
400	195
450	220
500	240
600	285
700	330
800	370

Nominal Size	Dimension
DN	b
11¼° BENDS	
80	30
100	30
150	35
200	40
250	50
300	55
350	60
400	65
450	70
500	75
600	85
700	95
800	110

PUSH-IN FLEXIBLE TEES SOCKET - SOCKET x SOCKET

Nominal Size	Dimension	
DN	L	С
DN 80		
80	170	85
DN 100		
80	170	95
100	190	95
DN 150		
80	170	120
100	195	120
150	255	125
DN 200		
80	175	145
100	200	145
150	255	150
200	315	155
DN 250		
80	180	170
100	200	170
150	260	175
200	315	180
250	375	190
DN 300		
80	180	195
100	205	195
150	260	200
200	320	205
250	375	210
300	435	220
DN 350		
100	205	220
150	265	230
200	325	230
250	380	240
300	440	245
350	495	250



Nominal Size	Dimension			
DN	L	С		
DN 400	DN 400			
100	210	245		
150	270	250		
200	325	260		
250	385	265		
300	440	2706		
350	500	275		
400	500	280		
DN 450				
100	215	270		
150	270	280		
200	330	280		
250	385	290		
300	445	295		
350	505	300		
400	560	305		
450	620	310		
DN 500				
100	215	295		
150	275	300		
200	330	310		
250	390	315		
300	450	320		
350	505	325		
400	565	330		
450	620	335		
500	680	340		

Nominal Size	Dimension		
DN	L	С	
DN 600			
200	340	360	
250	395	365	
300	455	370	
350	510	375	
400	570	380	
450	630	385	
500	685	390	
600	800	400	
DN 700			
200	345	410	
250	400	415	
300	460	420	
350	520	425	
400	575	430	
450	635	435	
500	690	440	
600	810	450	
700	925	460	
DN 800	DN 800		
200	350	460	
250	410	465	
300	465	470	
350	525	475	
400	580	480	
450	640	485	
500	700	490	
600	815	500	
700	930	510	
800	1045	525	

PUSH-IN FLEXIBLE TEES SOCKET - SOCKET X FLANGE

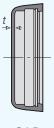
Nominal Size	Dimension	
DN	L	C
DN 80		
80	170	165
DN 100		
80	170	175
100	190	180
DN 150		
80	170	205
100	195	210
150	255	220
DN 200		
80	175	235
100	200	240
150	255	250
200	315	260
DN 250		
80	180	265
100	200	270
150	260	280
200	315	290
250	375	300
DN 300		
80	180	295
100	205	300
150	260	310
200	320	320
250	375	330
300	435	340
DN 350		
80	185	325
100	205	330
150	265	340
200	325	350
250	380	360
300	440	370
350	495	380

Nominal Size	Dimension		
DN	L	С	
DN 400	DN 400		
80	185	355	
100	210	360	
150	270	370	
200	325	380	
250	385	400	
300	440	400	
350	500	410	
400	500	420	
DN 450			
80	190	385	
100	215	390	
150	270	400	
200	330	410	
250	385	420	
300	445	430	
350	505	440	
400	560	450	
450	620	460	
DN 500			
80	195	415	
100	215	420	
150	275	430	
200	330	440	
250	390	450	
300	450	460	
350	505	470	
400	565	480	
450	620	490	
500	680	500	

Nullillal Size	Dilligiision	
DN	L	С
DN 600		
80	200	475
100	220	480
150	280	490
200	340	500
250	395	510
300	455	520
350	510	530
400	570	540
450	630	550
500	685	560
600	800	580
DN 700		
80	205	505
100	230	510
150	295	520
200	345	525
250	400	535
300	460	540
350	520	550
400	575	555
450	635	565
500	690	570
600	810	585
700	925	600
DN 800		
80	210	565
100	234	570
150	292	580
200	350	585
250	410	595
300	465	600
350	525	610
400	580	615
450	640	625
500	700	630
600	815	645
700	930	660
800	1045	675

Nominal Size Dimension

PUSH-IN FLEXIBLE TEES INVERT SCOUR

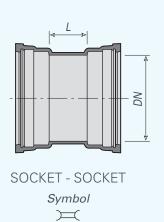

Nominal Size	Dimension		
DN	dn	L	С
200	80	190	250
250	80	220	275
300	80	220	305
350	100	225	340
400	100	225	365
450	100	230	380
500	100	230	400
600	100	355	435
700	150	360	500
700	200	360	500
800	150	360	540
800	200	360	540

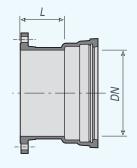
For sizes above DN 800 refer to your Viadux Water Solutions representative.

INVERT SCOURTEE

Symbol

CAP

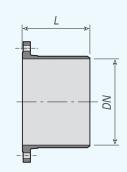

Symbol


PUSH-IN FLEXIBLE CAPS

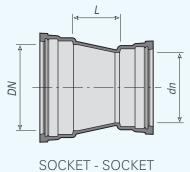
Nominal Size	Dimension
DN	t
80	18
100	18
150	18
200	18
250	19.5
300	23
350	24
400	25
450	26
500	27
600	29.5
700	31
800	33

PUSH-IN FLEXIBLE CONNECTORS

Nominal Size	Dimension
DN	dn
80	160
100	160
150	165
200	170
250	175
300	180
350	185
400	190
450	195
500	200
600	210
700	220
800	230
FLANGE - SO	CKET
80	130
100	130
150	135
200	140
250	145
300	150
350	155
400	160
450	165
500	170
600	180
700	190
800	200
FLANGE - SP	IGOT
80	350
100	360
150	380
200	400
250	420
300	440
350	460
400	480
450	500
500	520
600	560
700	600
800	600



FLANGE - SOCKET

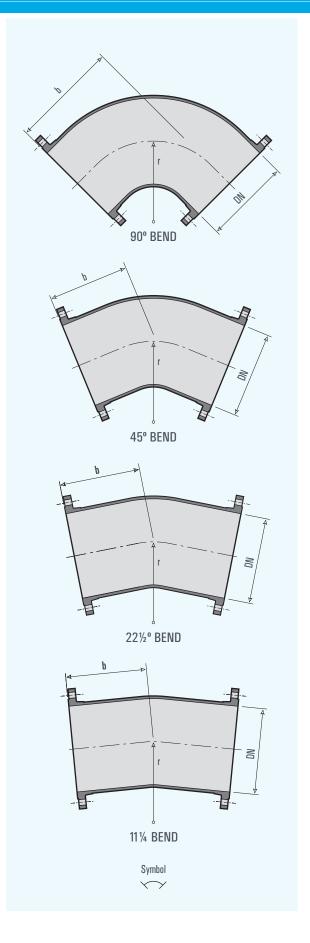

Symbol

—(

FLANGE - SPIGOT

Symbol

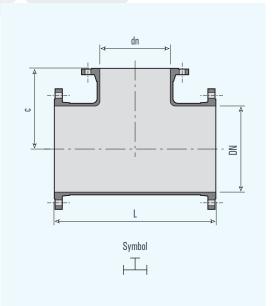
Symbol >


PUSH-IN FLEXIBLE TAPERS

Nominal Size	Dimension	
DN	dn	L
100	80	90
150	80	190
150	100	150
200	100	250
200	150	150
250	150	250
250	200	150
300	150	350
300	200	250
300	250	150
350	200	360
350	250	260
350	300	160
400	200	460
400	250	360
400	300	260
400	350	160
450	250	460
450	300	360
450	350	260
450	400	160
500	250	560
500	300	460
500	350	360
500	400	260
500	450	160
600	300	660
600	350	560
600	400	460
600	450	360
600	500	260
700	450	600
700	500	480
700	600	280
800	500	670
800	600	480
800	700	280

FLANGED JOINT PIPELINE FITTINGS

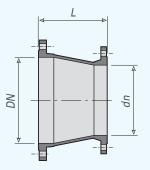
FLANGED BENDS


Nominal Size	Dimension
DN	b
90° BENDS	
80	165
100	180
150	220
200	260
250	350
300	400
350	450
400	500
450	550
500	600
600	700
700	800
800	900
45° BENDS	
80	130
100	140
150	
100	160
200	160 180
200	180
200 250	180 350
200 250 300	180 350 400
200 250 300 350	180 350 400 300
200 250 300 350 400	180 350 400 300 325
200 250 300 350 400 450	180 350 400 300 325 350
200 250 300 350 400 450 500	180 350 400 300 325 350 375

Nominal Size	Dimension
DN	b
22½° BENDS	
80	130
100	140
150	160
200	180
250	350
300	400
350	300
400	325
450	350
500	375
600	425
700	480
800	530
11¼° BENDS	
80	130
100	140
150	160
200	180
250	350
300	400
350	300
400	325
450	350
500	375
600	425
700	480
800	530

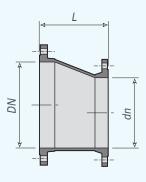
FLANGED TEES

Nominal Size	Dimension		
dn	L	С	
DN 80			
80	330	165	
DN 100			
80	360	175	
100	360	180	
DN 150			
80	440	205	
100	440	210	
150	440	220	
DN 200			
80	520	235	
100	520	240	
150	520	2508	
200	520	260	
DN 250			
80	700	265	
100	700	2752	
150	700	300	
200	700	325	
250	700	350	
DN 300			
80	800	290	
100	800	300	
150	800	325	
200	800	350	
250	800	375	
300	800	400	



Nominal Size	Dimension	
dn	L	С
DN 350		
100	850	325
150	850	325
200	850	325
250	850	325
300	850	425
350	850	425
DN 400		
100	900	350
150	900	350
200	900	350
250	900	350
300	900	450
350	900	450
400	900	450
DN 450		
100	950	375
150	950	375
200	950	375
250	950	375
300	950	475
350	950	475
400	950	475
450	950	475

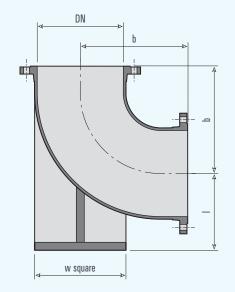
Nominal Size	Dimension		
dn	L c		
DN 500			
100	1000 400		
150	1000 400		
200	1000	400	
250	1000	400	
300	1000	500	
350	1000	500	
400	1000	500	
450	1000	500	
500	1000	500	
DN 600			
200	1100	450	
250	1100	450	
300	1100	550	
350	1100	550	
400	1100	550	
450	1100	550	
500	1100	550	
600	1100 550		
DN 700			
200	650	525	
250	705 530		
300	760	540	
350	815	550	
400	870	555	
450	925	560	
500	980	570	
600	1200	585	
700	1200	600	
DN 800			
200	690	585	
250	745	590	
300	800	600	
350	855	610	
400	910	615	
450	965	620	
500	1020	630	
600	1350	645	
700	1350	660	
800	1350	675	

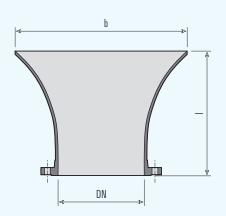

FLANGED TAPERS

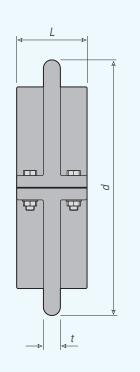
Nominal Size	Nominal Size Dimension			
dn	L c			
CONCENTE	CONCENTRIC			
100	80	200		
150	80	400		
150	100	300		
200	100	600		
200	150	300		
250	150	600		
250	200	300		
300	150	600		
300	200	600		
300	250	300		
350	200	600		
350	250	600		
350	300	300		
400	200	600		
400	250	600		
400	300	600		
400	350	300		
450	250 600			
450	300	600		
450	350	600		
450	400	300		
500	250	700		
500	300	600		
500	350	600		
500	400	600		
500	450	300		
600	300	800		
600	350	700		
600	400	600		
600	450	600		
600	500	600		
700	450	700		
700	500	600		
700	600	600		
800	500	800		
800	600	600		
800	700	600		

FLANGE - FLANGE CONCENTRIC

Symbol


FLANGE - FLANGE ECCENTRIC


Symbol

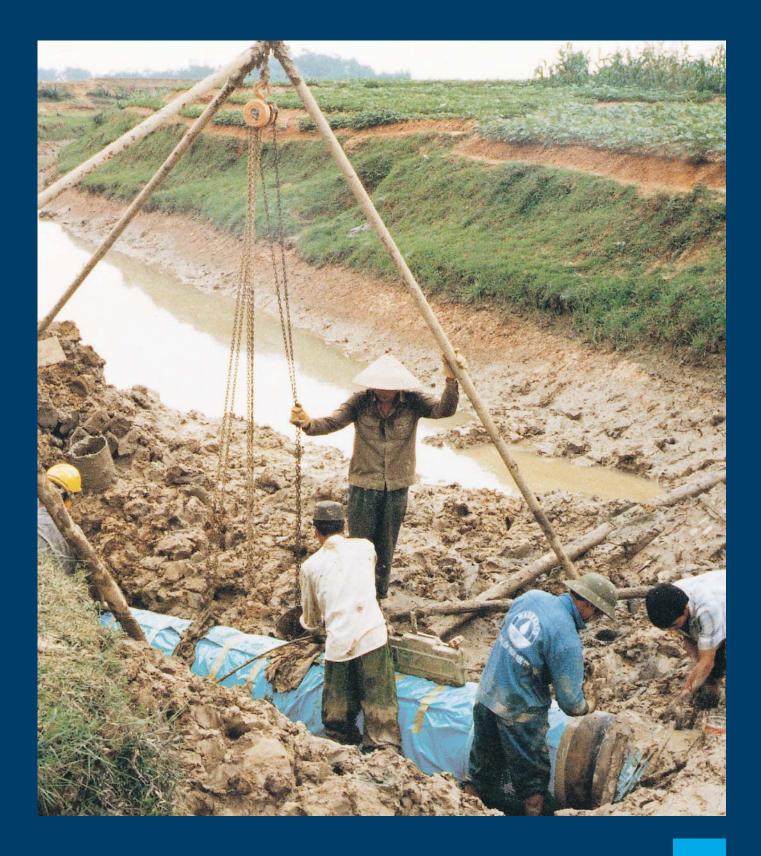

Nominal Size	Dimension		
dn	L	С	
ECCENTRIC			
100	80	200	
150	80	400	
150	100	300	
200	100	600	
200	150	300	
250	150	600	
250	200	300	
300	150	600	
300	200	600	
300	250	300	
350	200	600	
350	250	600	
350	300	300	
400	200	600	
400	250	600	
400	300	600	
400	350	300	
450	250	600	
450	300	600	
450	350	600	
450	400	300	
500	250	700	
500	300	600	
500	350	600	
500	400	600	
500	450	300	
600	300	800	
600	350	700	
600	400	600	
600	450	600	
600	500	600	
700	450	700	
700	500	600	
700	600	600	
800	500	800	
800	600	600	
800	700	600	

FLANGED DUCKFOOT BENDS

Nominal Size	Dimension	Dimension	
dn	b	I	w
100	180	125	200
150	220	160	250
200	260	190	300
250	350	225	350
300	400	255	400
350	450	290	450
400	500	320	500
450	550	355	550
500	600	385	600
600	700	450	700
700	800	515	800
800	900	580	900

FLANGED BELLMOUTHS

Nominal Size	Dimension	
dn	I	b
00	140	185
150	155	245
200	170	310
250	190	370
300	210	435
350	225	495
400	245	560
450	260	620
500	280	685
600	300	810
700	340	945
800	380	1055


PUDDLE FLANGES

Nominal Size	Dimension		
dn	d	t	L
100	235	19	110
150	300	20	110
200	360	22	110
250	425	25	110
300	485	28	110
350	555	30	110
400	620	32	110
450	670	35	110
500	730	37	110
600	845	42	110
700	960	47	110
800	1085	51	110

viadux

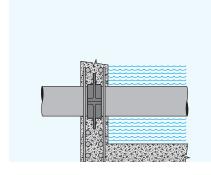
DUCTILE IRON PIPELINE SYSTEMS

DESIGN GUIDELINES

The process of designing pipeline systems can be complex and requires the skills of a professional, expert in the field.

The following guidelines, although not an exhaustive list, should be considered during various stages in the design and construction

PIPES BUILT INTO STRUCTURES

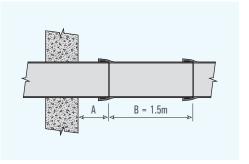

process.

There are a number of design considerations to be taken into account where pipes are built into structures.

WATER BARRIER

Where a pipe passes through the concrete wall of a tank holding liquid and the pipe is below the water level, a means of preventing the liquid leaking between the outside of the pipe and the surrounding structure is required. If the type of installation is such that there is no end thrust tending to push the pipe through the structure, a split puddle flange may be used to provide the water barrier. Split puddle flanges are designed for use on the bodies of pipes produced by the centrifugal casting method, i.e. spigot and socket pipes or flanged pipes. Prior to assembly, mating surfaces are coated with a sealing compound.

ANCHORAGE



Split thrust flanges used to withstand horizontal thrusts are located in a machined groove cut on the outside surface of the pipe. Appropriate steel reinforcement should be located in the concrete structure around the thrust flange to take the thrust forces transferred to the concrete wall by the flange.

FLEXIBILITY

Where a buried pipeline passes through a rigid structure and differential settlement of the structure and the adjacent ground is anticipated, two flexible joints should be introduced immediately adjacent to the face of the structure.

It is recommended that dimension A be as short as possible consistent with making the joint, and that dimension B be 1.5m.

Trench incorporating gradient anchors

ANCHORAGE OF PIPELINES

All pressure pipelines having unanchored flexible joints require anchorage at changes of direction, tees, valves and at blank ends to resist the thrusts developed by internal pressure.

STATIC THRUSTS

Internal pressure thrusts act in the directions indicated.

Additional dynamic thrusts are created by moving water, which are usually negligible unless the flow velocity is extremely high. The magnitude of static thrusts may be calculated as follows:

Blank ends and junctions = 103AP kN The above formula also applies to closed valves unpressurised on the downstream side.

Bends = $10^3 \text{AP2Sin U}_2 \text{ kN}$

Main reducing in cross section area from

 A_1 to A_2 at a taper = $10^3 P(A_1 \cdot A_2)$ kN

where

A = cross-sectional area. m²
(in the case of Push-in Flexible pipe, the external diameter of the barrel should be used in the calculation)

P = internal pressure. MPa

U = angle of deviation of bend

The following table gives the values of these thrusts at standard fittings.

Direction of thrust for various fittings

THRUST DEVELOPED PER MPA INTERNAL PRESSURE APPROX

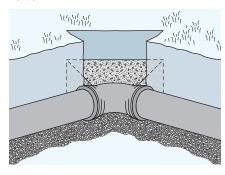
Nom. Size	Blank ends and Junctions	Bends			
		90°	45°	22.1/2°	11.1/4°
DN	kN	kN	kN	kN	kN
80	8	11	6	3	1
100	11	15	8	4	2
150	23	32	17	9	4
200	39	55	30	15	8
250	59	83	45	23	12
300	83	118	64	33	16
350	112	159	86	44	22
400	145	204	111	56	28
450	181	256	138	71	35
500	222	314	170	87	44
600	317	448	242	124	62
700	428	605	327	167	84
800	557	787	426	217	109

ANCHOR BLOCKS

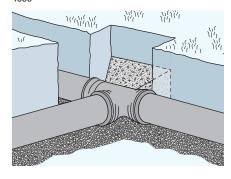
Anchorage to resist the thrusts must be designed taking full account of the maximum pressure the main is to carry in service or on site test and the safe bearing pressure of the surrounding soil.

Where possible concrete anchor blocks should be of such a shape as to allow sufficient space for the remaking of joints.

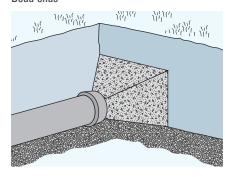
HORIZONTAL THRUST – BURIED MAINS

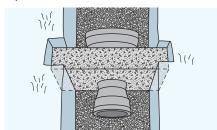

The thrust developed must be transferred to the undisturbed earth of the trench wall by anchor blocks poured against the appropriate

area of earth face. Horizontal anchor blocks distribute thrust forces over the total bearing area of the block in order that the safe bearing pressure of the trench wall is not exceeded, thus ensuring the stability of the pipeline under test and working pressures.

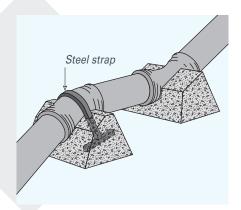

Typical values for the safe bearing pressure of different undisturbed soils are given below based on a horizontal thrust at a minimum depth of 0.6m.

Soil Type	Safe Bearing Pressure kN/m2
Soft Clay	24
Sand	48
Sand and Gravel	72
Sand and Gravel bonded with Clay	96
Shale	240


Bends


Tees

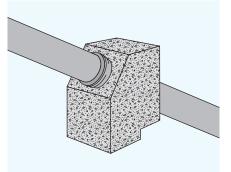
Dead ends



Tapers

VERTICAL THRUST – BURIED MAINS

Downward vertical thrusts are transferred to the undisturbed ground by anchor blocks in the same manner as horizontal thrusts. Upward vertical thrusts are counteracted by the mass of the concrete anchoring block. If the water table in the area is likely to reach the level of the anchor block, the submerged mass of the block should be taken. If the natural ground is of sufficient strength i.e. rock, special anchor blocks can be cast into the rock to resist vertical upward thrust forces.


Vertical bends

GRADIENT THRUST – BURIED OR 'ABOVE GROUND' MAINS

Pipes laid at gradients steeper than 1 in 6 generally require anchorage. Flexible jointed pipelines laid on steep slopes require restraint to prevent relative movement of individual pipes due to the component of the mass of pipe and contents acting along the direction of the gradient.

Buried pipelines develop frictional resistance between the backfilling material and the pipeline which counteracts a proportion of the sliding thrust. The table below gives an indication of the spacing of anchor blocks for buried or 'above ground' pipelines for different gradients.

Gradient anchorage

Gradient	Spacing of Anchor Blocks. m
1 in 2	5.5
1 in 3	11.0
1 in 4	11.0
1 in 5	16.5
1 in 6	22.0

EXAMPLE

Determine the lateral bearing area and anchor block size for a horizontal 90° bend on a DN 250 ductile iron rising main. The ground is shale and the maximum site test pressure is 4.5 MPa.

From the table of thrusts developed at standard fittings:

Thrust at a DN 250 90° bend for 4.5MPa internal pressure is

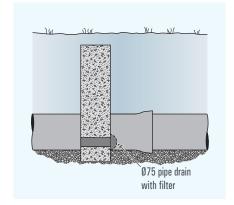
 $4.5 \times 91 = 409.5 \text{ kN}.$

The safe bearing pressure for shale is 240 kN/ m².

Bearing area of anchor block is

 $409.5 = 1.7m^2$

240


Select anchor block say

1.7m x 1.0m.

BULKHEADS

Concrete bulkheads may be required in some situations to prevent scouring of bedding and backfill through trench drainage and consequent trench collapse. These situations mainly arise when laying pipelines on steep grade (> 1 in 6), across roadways or beside building structures. The bulkheads should be placed at the discretion of the construction engineer. Suitable drainage lines should pass through the bulkhead to facilitate natural water drainage along the trench.

Concrete bulkhead to be 150mm thick for full width of trench and to height and spacing required to prevent scouring of trench by drainage waters


Singapore construction

POOR GROUND CONDITIONS

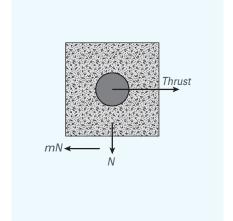
In trench conditions where the allowable bearing pressure of the side wall soil is insufficient to support thrusts or in embankment conditions where undisturbed ground is unavail-able, specially designed anchor blocks should be installed. For large diameter pipes in the higher pressure range, reinforced concrete chair-shaped anchors may be used. The bending and tensile stresses are taken by the steel rein-forcement in the direction of thrust while the weight of

Reinforced concrete anchor block for poor ground conditions

the earth on the base helps to counteract the overturning effect.

Concrete mass frictional anchor blocks may be preferred in some situations. The resistance force is given by:

R = mN


where

m = friction coefficient

= 0.2 to 1.0

N = weight of concrete anchor block

Mass concrete anchor block

AGGRESSIVE GROUND CONDITIONS

The corrosion behaviour of ductile iron pipe varies considerably depending on ground and soil conditions, and in almost all circumstances failure will not eventuate until corrosion pitting has penetrated the full thickness of the pipe wall. 'Aggressive' ground conditions

are defined as those which would lead to corrosion failures within a specified period of time after installation of the pipeline – say 50 years. In these conditions corrosion mitigation measures, such as the use of loose polyethylene sleeving, can prevent premature corrosion failures.

CORROSIVE ENVIRONMENTS

As a guide, the following environments would normally require corrosion protection in order to achieve satisfactory long term performance of a ductile iron

pipeline:

- Areas of waterlogged soil, such as swamps and intertidal salt marshes.
- 2 Highly alkaline soils.
- 3 Cinder fill.
- 4 Areas of decaying vegetation.
- 5 Presence of stray electric direct currents.

In addition to these environments, attention should be paid to the connection of copper service pipes to ductile iron pipes buried in 'moist' coastal soils. In this situation some form of insulation is required between the copper service pipe and ductile iron pipe to prevent galvanic action.

ASSESSMENT SYSTEMS

Over the years, several systems have been developed for the assessment of soil corrosivity, based upon empirical and theoretical considerations.

The most reliable system currently available is the system incorporated in the American Standard ANSI/AWWA C105/A21.5. Results from the testing of soil resistivity (preferably saturated soil resistivity), soil pH, redox potential, presence of sulphides and drainage are used to determine whether the soil is aggressive to ductile iron and protection is required.

Soil resistivity and soil pH are used to indicate the salt content of the soil, and redox potential, presence of sulphides and drainage are used to determine the likelihood of anaerobic soil conditions.

This grit blasted ductile iron pipe was buried for over 11 years in agressive soil. The left hand side of pipe was polyethylene sleeved, the right hand side left bare.

Upon consideration of these five criteria, the points assigned are totalled and if the sum exceeds 10, some form of protection is indicated.

The soil sample used in the 10 point evaluation should be taken at pipe depth rather than at the surface. Soil corrosivity readings can vary substantially from the surface to pipe depth.

SOIL TEST EVALUATION FOR DUCTILE IRON PIPE. 10 POINT SYSTEM*

Soil Characteristics	Points	
Resistivity [†] ohm. cm	< 700	10
	700-1000	8
	1000-1200	5
	1200-1500	2
	1500-2000	1
	> 2000	0
рН	0 - 2	5
	2 - 4	3
	4 - 6.5	0
	6.5 - 7.5	0 [‡]
	7.5 - 8.5	0
	> 8.5	3
Redox Potential	+50 to +100 mv	3.5
	0 to +50 mv	4
	Negative	5
Sulphides	Positive	3.5
	Trace	2
	Negative	0
Moisture Poor drainage, continuously wet Fair drainage, generally moist		2
		1
Good drainage, ge		0

- * Ten points corrosive to Ductile Iron pipe.
- † Based on single probe at pipe depth or water-saturated soil box, because these methods are designed to obtain the lowest and most accurate resistivity reading.
- ‡ If sulphides are present and low or negative redox-potential results are obtained, 3 points should be given for this range.

LOOSE POLYETHYLENE SLEEVING

The inherent corrosion resistance of the ductile iron pipe and fittings with standard coating provides adequate protection except in aggressive soils where additional protection in the form of loose polyethylene sleeving is recommended.

Loose polyethylene sleeving

is used as the principle means of providing corrosion protection for ductile iron pipelines in aggressive soils throughout the world. The technique was developed in the United States of America in the 1950's and has been used in Australia since 1966. Basically, the sleeving isolates the pipe from the surrounding soil, restricting material and ionic flow between the surface of the pipe and the surrounding soil. The presence of moisture in the cavity between pipe and soil is not important providing:

- no soil is trapped inside the sleeving
- the water inside the sleeving is stagnant and not flowing
- the sleeving is adequately 'sealed' to prevent ingress of oxygen.

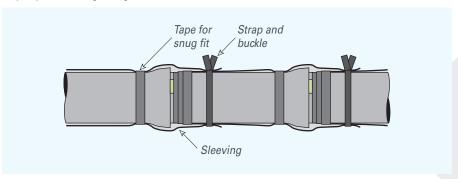
VIADUX WATER SOLUTIONS 'POLYBOSS' POLYETHYLENE SLEEVING

Viadux Water Solutions' 'POLYBOSS' polyethylene sleeving is manufactured in accordance with

the requirements of AS 3680 – 'Polyethylene Sleeving for Ductile Iron Pipelines' and has the following advantages.

- perforations at 6.1m lengths for accurate measurement and easy tear-off.
- the water industry has adopted blue as the preferred colour coding for water applications. Since the vast majority of ductile iron pipes are used in water applications, it was a logical step to move from the previously used green colour to blue.
- end flanges on the roll to protect against damage and allow easy roll-out.
- printing to identify it as a special protection system in aggressive soils to pipelayers and maintenance personnel.

The advantages of loose polyethylene sleeving over more conventional coatings can be summarised thus:


- 1 Comparative ease of sleeving application.
- Elimination of possible damage to the protection system during transportation.
- 3 Relative movement of the loose film with soil movement minimises the risk of tearing whilst in service.
- 4 Damage to sleeving can be easily repaired during installation.
- 5 Cathodic protection is not required.
- 6 The technique is relatively inexpensive.

POLYETHYLENE SLEEVING SPECIFICATION

Polyethylene sleeving for the corrosion protection of ductile iron pipe should be supplied in accordance with the requirements of AS 3680. These requirements can be achieved by compliance with the following.

Property	Requirement		
Colour	Blue		
Nominal thickness	Minimum 200mm		
Ultimate tensile	Minimum 50N on		
strength	weathered film		
Elongation	Minimum 1000%		
	on weathered film		
Impact Resistance	Greater than 900g		
	on weathered film		
Tear Resistance	Greater than 25N		
	on weathered film		
Layflat tube width	See page 48		

Polyethylene sleeving configuration

ABOVE GROUND PIPELINES

The following recommendations assume that no additional bending moments above those due to self weight of the pipe and its contents are present.

PUSH-IN FLEXIBLE PIPELINES

NORMAL CONDITIONS

It is recommended that above ground installations of Push-in Flexible JOINT pipelines be provided with one support per pipe, the supports being positioned behind the socket of each pipe.

This results in a normal maximum distance between supports of 6m. Figure 1. Pipes should be fixed to the supports with mild steel straps, so that axial movement due to expansion or contraction resulting from temperature fluctuation, is taken up at individual joints in the pipeline. In addition joints should be assembled with the spigot end withdrawn 5 to 10mm from the bottom of the socket to accommodate these thermal movements.

Pipes supports in this way are capable of free deflection and axial movement at the joints which accommodates small movements of the pipe supports.

Purpose designed anchorage must be provided to resist the thrusts developed by internal pressure at bends, tees, etc. When determining the actual position of the support centres, it should be remembered the lengths of pipes are subject to manufacturing tolerances.

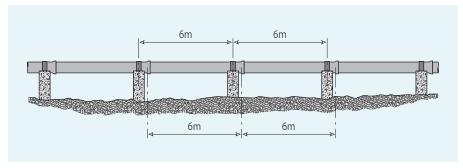


Figure 1. Normal maximum distance between supports of 6.0m

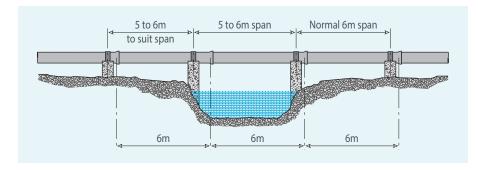


Figure 2. Unsupported spans slightly larger than 6.0m

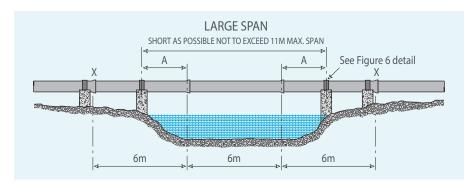


Figure 3. Unsupported spans between 6 and 11m

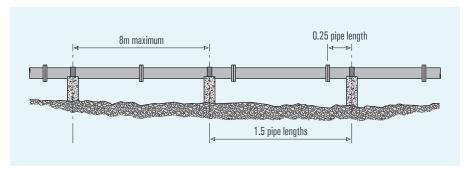


Figure 4. Standard 5.8m long flanged pipes with screwed-on flanges installed as a continuous beam

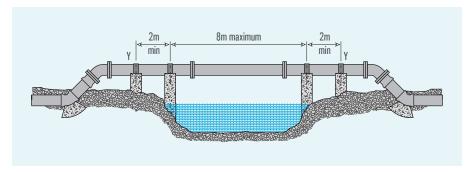
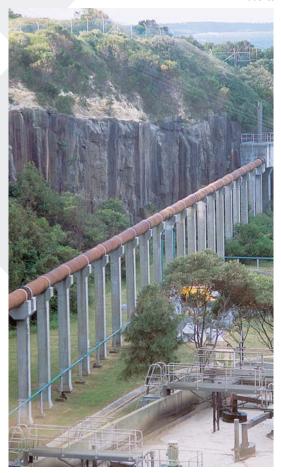



Figure 5. Standard 5.8m long flanged pipes with screwed-on flanges installed as a beam with fixed ends

SPECIAL CONDITIONS

UNSUPPORTED SPANS SLIGHTLY LARGER THAN 5.5M

If necessary, unsupported spans of 6m can be obtained by positioning the pipe supports relative to the pipe joints as indicated in Figure 2.

800mm pipeline on columns, supported at 6 metre centres

UNSUPPORTED SPANS BETWEEN 6 AND 11 M

Where a support cannot be provided at every pipe, e.g. at stream crossings etc, unsupported spans of up to 12m can be installed by positioning supports relative to joints as indicated in Figure 3.

The length of dimension A should not exceed one quarter of the total span length. Cut pipes, fittings, valves, etc, which are adjacent to the span, must be positioned outside the joints marked X and the length between the joints X-X must be equal to 3 full length pipes, i.e., 18m.

FLANGED JOINT PIPELINES

Flanged pipes are subjected to stresses caused by internal pressure and stresses due to local bending moments created by tightening of the bolts.

Flanged pipes installed as self supporting spans are subjected to additional stresses due to bending moments caused by their own

weight and the weight of their contents.

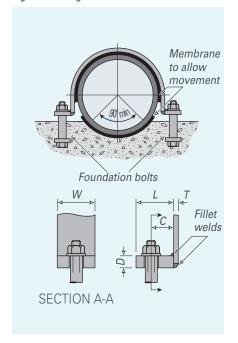
The length of unsupported spans of flanged piping is limited by the need to confine stresses due to the combined effects of internal pressure, bolt tightening and bending moments, within safe limits. The following recommendations are for standard 5.8m long pipes and take account of the above factors.

STANDARD 5.8M LONG FLANGED PIPES WITH SCREWED-ON FLANGES INSTALLED AS A CONTINUOUS BEAM

The recommended maximum unsupported span is 8m. The initial support should be located one quarter of a pipe length from the first flanged joint and subsequent supports located at 1.5 pipe length intervals as shown in Figure 4.

STANDARD 5.35M LONG FLANGED PIPES WITH SCREWED-ON FLANGES INSTALLED AS A BEAM WITH FIXED ENDS (STREAM CROSSINGS)

The recommended maximum unsupported span at stream crossings, etc, is 8m. The relative positions of pipe joints and pipe supports should be as shown in Figure 5.


The supports of all flanged pipe-work spans must accurately align to ensure each support carries its share of the weight of the pipeline and they must be stable and unyielding since movement of the supports will induce additional bending moments in the pipeline. The straps must prevent any lateral movement or lifting of the main but not restrict axial expansions and contractions of the main caused by temperature fluctuations.

FIXING DETAILS

The strap and bolts shown below are suitable for retaining the pipe in position on the supports. They are not designed to carry the thrusts due to unbalanced loads at bends and other fittings. In these circumstances each case should be considered on its merits and the bolt size and strap design determined accordingly, e.g., the straps marked Y in Figure 5.

Nominal size of pipe	T	W	D	L	C	Size of bolt
DN	mm	mm	mm	mm	mm	mm
80 – 150	6	40	13	45	25	M12
200 - 300	6	50	16	50	30	M16
350 - 600	10	65	19	65	35	M20
700 – 800	10	90	25	75	42	M24

Figure 6. Fixing details

DUCTILE IRON PIPELINE SYSTEMS

HANDLING AND INSTALLATION

Construction procedures are generally in accordance with the British Standard BS 8010

- Code of Practice for Pipelines: Part 1

Pipelines on Land, General Section 2.1

Ductile Iron Pipelines

The successful and economical installation of a pipeline relies on many factors and prior to laying, contractors should check that:

- Access and storage areas are available for pipe delivery.
- 2 Pipe delivered is of the correct diameter shown on the drawings.
- 3 Gaskets, lubricant and polyethylene sleeving (where required) have been delivered.
- 4 Required fittings have been delivered.
- 5 Size and location of thrust blocks is known (or locations of joint restraint).
- 6 Pipe site testing requirements are known.

Pipe packs being loaded for shipping to the Pacific region

HANDLING RECOMMENDATIONS

Ductile iron pipes are not susceptible to breakage by impact loading but bad handling can result in damaged linings and in severe cases, in bruising and deformation of the spigot which could affect the sealing of the joint. Damage to pipes and joint components may be caused by:

- a Insecure load on truck or wagon
- b Improper use of handling equipment
- c Use of unsuitable handling equipment
- d Incorrect stacking methods
- e Improper storage of joint components
- f Unloading on uneven or sloping ground

Damage can be avoided by paying attention to the following points

TRANSPORTATION

All pipes must be secured by chains to the truck to prevent movement during transit. Suitable protection such as rubber or carpet should be placed between the chains and the outer pipes of the top row. The use of straight sided loading allows full advantage to be taken of the carrying capacity of the vehicle. Pipes should be loaded onto vehicles using scalloped hardwood timbers of sufficient thickness to ensure no metal to metal contact occurs between rows of pipes.

INSPECTION

On receipt, pipes should be inspected for damage to:

- 1 The pipe itself
- 2 Cement mortar linings
- 3 Jointing surfaces and any proposed remedial work undertaken as soon as possible.

UNLOADING

OFFLOADING BY CRANE

Pipe masses, type of stacking, outreach required and the site conditions are the important

factors to take into account when determining the suitability of lifting equipment. The machine used must be of the type which retains the load safely in the event of a power failure.

Personnel engaged in offloading operations are recommended to wear protective clothing wherever possible.

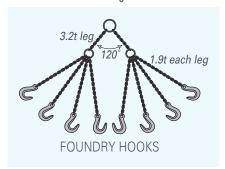
THE LIFTING OPERATION

It is necessary when using mechanical handling equipment to employ sufficient personnel to carry out the operation efficiently and safely.

Where the crane operator does not have a clear view of the load, he should be guided by the person supervising the operation.

The pipes should be lifted smoothly, without sudden jerking motions, and pipe movement should be controlled by the use of guide ropes. This is necessary for safety and also to prevent damage caused by pipes bumping together or against surrounding objects.

Lifting and placing must be carried out in such a way that the stability of the stack, crane or vehicle is not affected. Chains securing the pipes to the truck should not be released before ensuring the truck is positioned on level ground.


All-terrain forklifts may also be used to unload provided consideration is given to pipe size, weight limitations and site conditions. When lowering pipes, timber battens placed on the ground about 900mm from each end of the pipes should be used to absorb shock and to prevent damage to the coating.

CHAINS AND HOOKS

The recommended method of attaching pipes to the crane is by means of supporting chains with lifting hooks. The hooks should be of suitable shape to ensure positive engagement when entered into the ends of the pipes and they should pass over any protective packing fitted around the pipe ends by the manufacturer.

Use 2 hooks to lift DN 700 and DN 800 pipes. When the pipes are cement-mortar lined, the hooks should be padded using a piece of rubber hose or similar material to protect the lining.

Recommended hook design.

SLINGS

Long slings or a spreader bar should be used to unload packs of pipes. Short slings are not recom-mended as they may deform the pack causing the intermediate timbers to break. When it is necessary to use the central sling method for lifting single pipes, a broad webbing sling is recommended. For lifting larger pipes twin slings should be used

Other types of slings should be used with care; chain slings may slip and are potentially dangerous;

it is difficult to detect broken strands in plastic covered wire mesh slings and hemp rope slings can deteriorate rapidly due to weathering or misuse.

OFFLOADING WITHOUT CRANE

Where lifting gear is not available and the mass permits, pipes may be offloaded by rolling them down a ramp formed of timber skids extending from the truck side to the ground. During this operation it is essential to apply steadying ropes to prevent the pipes from rolling down at excessive speed and striking other pipes or objects on the ground. These ropes should be attached to the vehicle, passed under and around the ends of the pipe to be moved, then taken back over the

on the lorry side away from the ramp, so that the ropes can be paid out steadily to control the descending pipe.

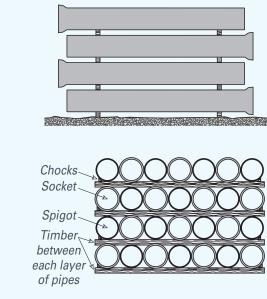
PIPE STACKING

top to purchase

The site for a depot should have a firm foundation for stacks of pipes, and a suitable approach road for vehicles. Stacks should be so arranged as to provide adequate vehicular and pedestrian access.

During stacking and removal operations, safe access to the top of the stack is essential. In bad weather conditions when pipe surfaces may become slippery, consideration should be given to the use of lightweight stagings placed on top of the stacks.

Ductile iron pipes should always be stacked on a base of raised wooden battens. The battens should be of sound timber free from protrusions and at least 100mm thick x 75mm wide. The battens should be positioned approximately 900mm from each end of the pipes. Stacks should be pre-chocked as they are assembled.


A. PARALLEL STACKING USING WOODEN ROLLING BOARDS

For this method of stacking, two timber battens are placed across the pipes between each tier approximately 900mm from the pipe ends.

The sockets of each alternate pipe should be reversed and the battens should be of sufficient thickness to avoid metal to metal contact

Pipes may be rolled into position along the battens, thus facilitating stacking or removal from the end

of the stack. An adequate number of chocks should be wedged under the outer pipes of each tier and nailed to the timber bearers to ensure stability.

B. SQUARE STACKING

By positioning each tier of pipes with their axes at right angles to those in the preceding tier, a stable and compact stack can be formed.

The sockets of alternate pipes in each tier should be reversed.

No timber is used between successive tiers and the sockets at each end of the preceding tier act as chocks, locking the tiers in position. Extra care should be exercised when lowering pipe into position. As no timber have is required a flat stacking area.

when lowering pipe into position. As no timber base is required a flat stacking area is necessary to avoid undue stress on the bottom tier.

C. PRE-BUNDLED PIPE STACKS

Pipes supplied in bundles with intermediate scalloped timbers are suitable for on-site stacking without provision of additional timber battens. Consideration should be given to maximum stacking heights.

RECOMMENDED STACKING HEIGHTS

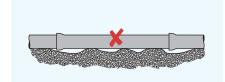
The heights of stacks are determined by consideration of:

- The stresses on the lowest layer of pipes in the stack.
- 2 The total lift given by the available crane.
- 3 The facilities available to ensure stable stacking.

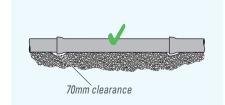
Taking all these factors into consideration, the following maximum stacking heights are recommended.

Nominal Size DN	Recommended Maximum Number of Layers in Stack
80	12
100	12
150	12
200	10
250	10
300	8
350	7
400	6
450	5
500	5
600	4
700	3
800	3

Pipe packs ready for export



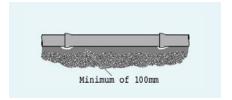
TRENCHING


The trench should be cut as narrow as practicable. Recommended minimum trench widths are shown below. Additional excavation is necessary at each joint to provide sufficient room for the joint to be properly made and to ensure that the pipe rests on the barrel and not on the socket. The preparation of the trench bottom, to give an even bed for the barrel of the pipe and the proper alignment of the pipe, is of great importance.

PIPE LAID ON NATURAL EARTH BED

INCORRECT: Uneven bedding causes extra stresses to be developed in the pipeline.

CORRECT: Level soil bed for pipe with excavated pockets at joints.



TRENCH WIDTHS

Nominal Size	Minimum Trench Width
DN	mm
80	380
100	400
150	450
200	500
250	550
300	600
350	650
400	700
450	800
500	850
600	950
700	1050
800	1150

In rocky ground the trench should be excavated at least 100mm deeper than required and then made up to the required level by the addition of well compacted soft granular material.

Pipeline laid on well compacted, soft, granular material

Where a change in direction is being made by utilising the lateral deflection allowable at the joints, the trench should be cut sufficiently wide to allow the joint to be made in line and then the pipe laterally deflected.

Where trench depths or soil conditions are such that there is a possibility of trench wall collapse then suitable means of shoring or battering of the trench walls must be carried out.

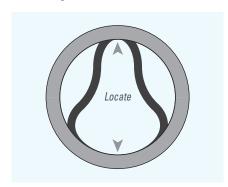
DEPTH OF COVER

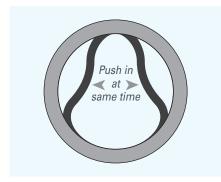
In general terms, the trench is excavated to a depth dependent upon the diameter of pipe being laid. This depth is a compromise between providing adequate cover over the pipe whilst allowing ready access for maintenance purposes.

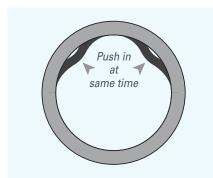
Other considerations when determining a suitable depth of cover include:

- loading on pipe, e.g., pipes usually have greater depth of cover when subject to vehicular loading.
- cover over tapping cock, valve etc.
- location of other services.
- future road regrading.
- removal of top soil, e.g., in ploughed fields or through erosion.
- high-pressure pipelines may require greater depth of cover.

The minimum depth of cover recommended is 300mm assuming none of the above considerations requires the pipeline to be laid at greater depth.

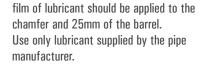

JOINTING AND ASSEMBLY


The Push-in Flexible JOINT has long been regarded as the benchmark for rubber ring jointing systems for the water industry. Its unique design offers quick and effective assembly under all conditions.

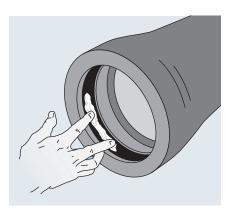

JOINTING INSTRUCTIONS FOR PUSH-IN FLEXIBLE JOINT PIPE

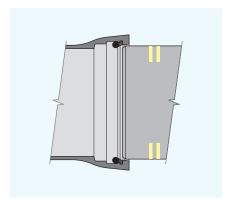
INSERTION OF GASKET

The gasket should be wiped clean, flexed, as shown, and then placed in the socket with bulb leading.



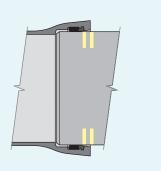
When inserting gaskets, flexing in two places may be necessary. The groove in the gasket must be located on the retaining bead in the socket, and the retaining heel of the gasket firmly bedded in its seat so that the heel of the gasket is not proud of the mouth of the pipe.


LUBRICATION


A thin film of lubricant is applied to the inside surface of the gasket which will be in contact with the entering spigot. In addition, a thin

INITIAL ENTRY OF SPIGOT

The spigot of the pipe being jointed must be aligned and entered carefully into the adjacent socket until it makes contact with the gasket. Final assembly of the joint is completed from this position.



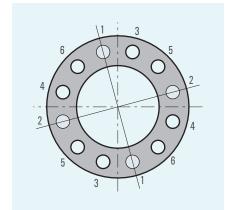
RECOM	MENDED	QUANT	ITIES F	OR PU	ISH-IN	FLEXIE	BLE JO	INT LU	BRICA	NT ISS	SUE
Nominal Size	C'tainer Size	Joints Per	Number	of Joint	S						
DN	gms	C'tainer	10	25	50	75	100	200	300	400	500
80	500	35	1	1	2	3	4	7	10	14	17
	1200	80	0	0	0	1	2	3	5	6	7
100	500	29	1	1	2	3	4	7	10	14	17
	1200	71	0	0	0	1	2	3	5	6	7
150	500	23	1	1	2	4	5	9	13	18	22
	1200	55	0	0	1	2	2	4	6	8	9
200	500	14	1	2	4	6	8	15	22	30	37
	1200	32	0	1	2	3	3	6	10	13	16
250	500	10	1	2	5	7	10	19	29	39	48
	1200	25	0	1	2	3	4	8	12	16	20
300	500	9	1	3	6	8	11	22	33	43	54
	1200	22	0	1	3	4	5	9	14	18	23
350	500	7	2	4	7	10	14	28	42	56	70
	1200	18	1	2	3	5	6	12	18	24	30
400	500	6	2	5	9	13	17	34	51	68	85
	1200	14	1	2	4	6	7	14	22	29	36
450	500	5	2	5	10	15	20	40	60	80	100
	1200	12	1	2	4	7	9	17	25	34	42
500	500	5	2	6	11	17	22	44	66	88	110
	1200	11	1	3	5	7	9	19	28	37	46
600	500	4	3	7	13	19	25	50	75	100	125
	1200	10	1	3	5	8	11	21	32	42	52
700	500	3	3	7	14	21	28	56	84	112	140
	1200	9	1	3	6	9	12	24	36	48	60
800	500	3	3	8	16	24	32	64	96	128	160
	1200	8	2	4	7	10	14	28	42	56	70

COMPLETELY ASSEMBLED JOINT

Joint assembly is completed by forcing the spigot end of the entering pipe past the gasket, which is thus compressed, until the first painted stripe on the end of the pipe disappears and the second is approximately flush with the socket face.

If the joint is difficult to assemble, the spigot should be removed and rotated through 90° before attempting to assemble a second time. If the joint is still difficult to assemble, the spigot should be removed and the position of the gasket examined.

DEFLECTION


The joints can be deflected in any direction up to 5° for pipes up to DN 300 and up to 4° for DN 350 to DN 800.

All spigots must be chamfered. When making a joint, pipes should always be in line and if required, deflection made after making the joint.

JOINTING INSTRUCTIONS FOR FLANGED JOINTS

- Ensure that face of flange is clean from dirt or particles of foreign matter.
- 2 Clean nuts and bolts.
- 3 Insert four location bolts in the positions shown on the diagram below.
- 4 Position insertion gasket on the location bolts.
- 5 Offer adjoining flange to bolts.
- 6 Tighten four location bolts in order given in diagram to roughly secure adjoining flange.
- 7 Insert remaining bolts and tighten diametrically opposite bolts. Check all bolt holes are filled.

Bolt tightening sequence for typical flanged joint

CUTTING OF PIPES

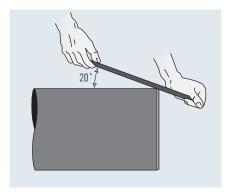
Standard methods of cutting pipes:

- Power-driven abrasive wheel cutters are efficient, clean and fast when cutting in the field.
- 2 Manual or power operated wheel cutters may be used. Ensure the type of wheel used is suitable for ductile iron. Cut ends require dressing with a file or grinder to form a chamfer for Push-in Flexible JOINT pipe.
- 3 Pipes cut beyond the limit of outside diameter tolerance may require grinding or dressing to remove the peening pattern on the pipe's outside surface to facilitate jointing.

Note. Hydraulic snap cutters used for grey cast iron pipes are not suitable for cutting ductile iron pipes.

Reed power assisted rotary cutter

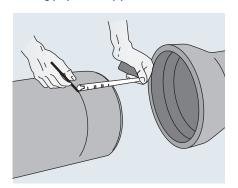
Pipeline construction in Sri Lanka


Abrasive disc cutter

PREPARATION OF SPIGOTS ON SITE

Where spigots require preparation on site, the outside of the spigot should be filed or ground to produce a chamfer angle of approximately 20°. This removes sharp or rough edges which might damage the gasket, and in addition facilitates the entry of the spigot past the gasket.

All spigots must be chamfered

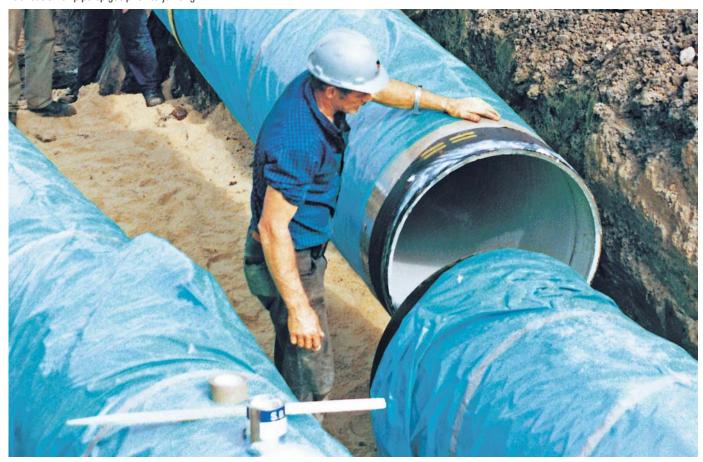


JOINTING CUT PIPE

To assist in the assembly of a field cut joint, mark the prepared cut end in accordance with the dimensions indicated in the table below. Complete the assembly as for full length pipe.

Nominal Size	Location of 'Cut-Pipe' Witness Mark Start of Witness Mark
Dn	mm
100 – 150	90
200 – 300	103
350	110
400 – 600	128
700	158
800	164

Marking prepared cut pipe


OVALITY

Pipes are checked for ovality before leaving the manufacturer's plant and under normal delivery conditions, no ovality correction would be required. If pipes are incorrectly stacked or damaged on site, ovality may occur. This could happen in a spigot or cut end of pipe generally larger than DN 450.

Ovality can be detected by inability to make the joint. If this situation arises, the pipe should be measured to locate the major and minor axes of the cross section.

Ovality correction is carried out by applying external force to the major axis or internal force to the minor axis before jointing. Care should be taken not to damage the internal cement lining.

Lubrication of pipe spigot prior to jointing

METHODS OF ASSEMBLY FOR PUSH-IN FLEXIBLE JOINT PIPES AND FITTINGS

Assembly of the joint is quick and simple, and may, according to size and local conditions, be carried out by any of the following methods.

CROWBAR METHOD

Complete entry of the spigot into the socket may be obtained by pushing with a crowbar or suitable lever against the face of the socket of the entering pipe.

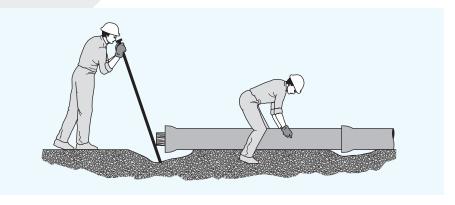
TIRFOR OR COME-ALONG METHOD

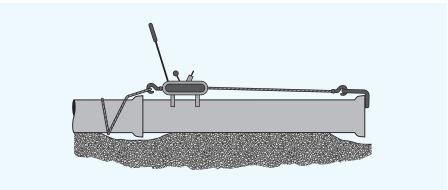
For joints above DN 150 a wire rope or chain puller can be used as shown the in diagram. These pullers are readily available.

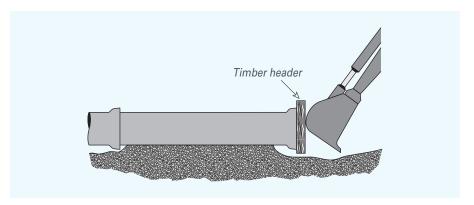
TRENCH EXCAVATOR METHOD

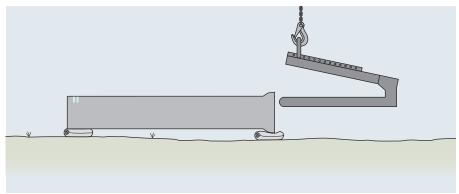
Where the trench is being prepared by using a backhoe or excavator, either machine may be used to push the spigot home.

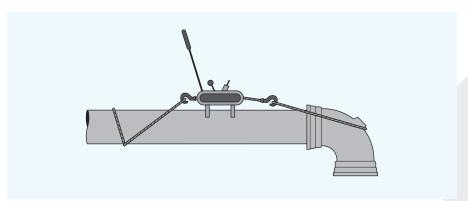
This system is mainly used on large diameter pipe and a timber header should be placed between the pipe and the bucket to prevent damage to the pipe.


HAIRPIN LIFTING METHOD


A hairpin lifting mandrel may be utilised for both lifting the pipe and making the joint. The mandrel is inserted into the bore of the pipe as shown, making sure care is taken not to damage the internal cement lining. The pipe can then be lifted and placed into the trench and jointed. The hairpin may also be used for sleeving pipes prior to laying and jointing.


FITTINGS

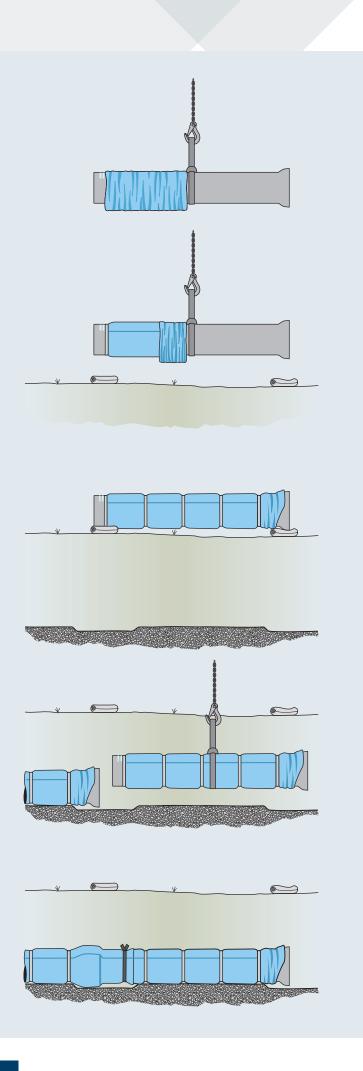

Small diameter socketted fittings can be pushed onto the pipe by using a crowbar.


Larger fittings are generally provided with a jointing lug suitably located in order that a wire rope or chain puller can be used to pull the fitting onto the spigot of the pipe.

APPLICATION OF LOOSE POLYETHY

Protection against corrosion is ensured by following these important points.

- Sleeving type only Viadux Water Solutions 'POLYBOSS' polyethylene sleeving is recommended.
- A clean pipe there should be no dirt or soil trapped inside the sleeving.
- Spigot end seal the sleeving must be sealed to the pipe at the spigot end to stop free flow of water under the sleeving.
- Fold on top the pipe should be laid with the fold in the sleeving on top so that the triple thickness gives extra protection.
- Close, snug fit the sleeving should fit the pipe snugly, to reduce any water inside to a minimum.


- Overlap seal the sleeving overlap from each pipe should be sealed to the sleeving of the next using strap and buckle.
- Inspection the sleeving should be inspected for damage just before laying and again before backfilling.
- Restoration all holes or tears must be repaired and all free edges sealed to ensure a continuous barrier, especially if there are any changes to the pipeline.
- Safe surround the pipe must be surrounded with a granular material with no sharp edges which could damage the sleeving.

POLYBOSS SPECIFICATION

Nominal Size	Lay Flat Width	Sleeves per Roll
DN	mm	
80	350	30
100	350	30
150	425	25
200	525	20
250	635	17
300	725	15
350	875	12
400	875	12
450	1100	10
500	1100	10
600	1270	8
700	1500	7
800	1500	7

Sleeving pipe with Pentair Water Solutions's POLYBOSS at Kuala Lumpur International Airport

PIPELINE SLEEVING PROCEDURE

The following procedures are in line with AS 3681 – 'Guidelines for the Application of Polyethylene Sleeving to Ductile Iron Pipelines and Fittings'.

 Lift the pipe to the sleeving area.
 Check the pipe surface is free from any adherent soil.

Remove a sleeve from the roll and draw it over the spigot end of the pipe. Draw the entire sleeve onto the raised end of the pipe, bunching the sleeving in concertina fashion toward the sling.

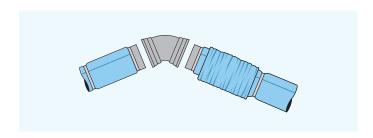
2 Locate the sleeve end on the line of diamonds near the spigot end. Pull the sleeving tightly around the pipe barrel, over a length of approximately 1.5m from the spigot end, and fold the surplus over to form a triple layer thickness of sleeving on top of the pipe.

Secure the sleeve end to the pipe by sealing the free edge to the pipe with three overlapping turns of tape.

Work loose sleeving toward the sling and secure the fold with tape. Lower onto sand bags and remove sling.

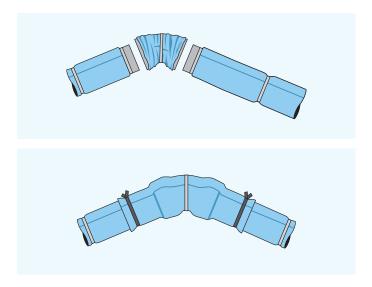
- 3 Spread the bunched sleeve toward the socket, tightly wrapping and securing the fold with tape at 1m intervals.
- 4 Lower the pipe into the trench after ensuring that a suitable depression has been made in the bedding at the joint to allow the overlap to be made.
- 5 Locate the spigot of the pipe in the preceding socket when bedding the pipe. Remove the sling and complete assembly of the ioint.

Draw the bunched sleeving from behind the socket of the preceding pipe over the joint onto the barrel of the next pipe. Care should be taken to avoid scooping backfill into the sleeving as it is pulled across the bedding depression.


Ensure the overlapping sleeving follows the contour of the joint, avoiding bridging of irregular profiles.

6 Secure the overlap to the sleeved barrel of the last pipe using strap and buckle.

SLEEVING FITTINGS


BENDS - METHOD A

- Where the body of the bend is too short to be sleeved separately, cut a
 piece of sleeving of sufficient length to extend from the barrels of the
 pipes on either side of the bend.
- Make the joint at one side of the bend. Slide the short length of sleeving loosely onto the spigot end of the pipe to be jointed and make the joint
- 3. After jointing draw the joint sleeve over the joint, fold neatly with the overlap at the crown and secure with strap and buckle. The strap must overlap the ends of the joint sleeve onto the sleeving on the pipe barrel to effect a seal. It is essential that the joint sleeve should follow the contour of the joint to prevent damage by backfilling material.

BENDS - METHOD B

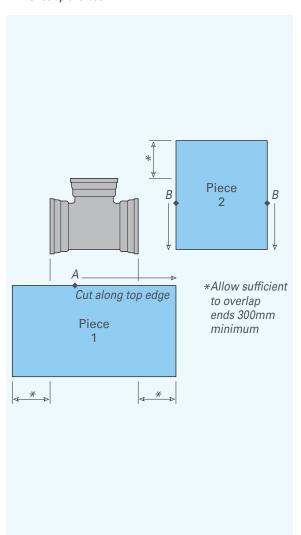
- Where the body of the bend is long enough to permit sleeving, cut a
 piece of sleeving long enough to cover the bend and overlap the ends by
 about 300mm.
- 2. Put the sleeving onto the bend with overlap on each side, make a fold at the top and secure with turns of tape around the centre of the bend.
- Ease the bunched sleeving over each joint onto the barrel of the pipe.
- 4. Fold the ends of the sleeve and seal them to the sleeved pipes with strap and buckle.

TEES

Step One

- Two pieces of sleeving are needed, one for the branch and one for the body.
- 2. Piece 1 should be cut to point A along the top edge so it can be fitted along the whole body.
- 3. Piece 2 should be cut to point B on both edges so it can be fitted over the branch.

Step Two


- 1. Lift fitting using a webbing sling around the socket of the branch
- Pull sleeving onto the body. Overlap and seal the edges. Tape around the body of the tee behind each socket.

Step Three

- 1. Lower the tee onto sandbags.
- Pull the second piece of sleeving over the branch. Pull the sleeving down to make a snug fit and tape around the socket. Tape the flaps to the body of the tee.

Step Four

 Install tee into pipeline and seal overlaps to sleeved pipes with strap and buck.

BACKFILLING

Prior to testing, the trench should be backfilled and compacted around the pipe barrel to prevent the pipeline from moving during testing. Joints may be left accessible for subsequent examination. In badly drained ground or where heavy rain is expected, finished sections should not be left unfilled as there is a risk that the pipeline could be moved by flotation. Backfilling of a trench depends on the resulting use to which the ground will be put. Backfilling can be broken up into zones as shown in the diagram below.

ZONE A

This material provides support to the pipeline enabling it to with-stand external loads. The higher the external loading (depth of trench or vehicle loading) the higher the grade of material to be used or the greater the degree of compaction to be carried out. If the excavated material is not suitable to provide the support required, imported fill must be used.

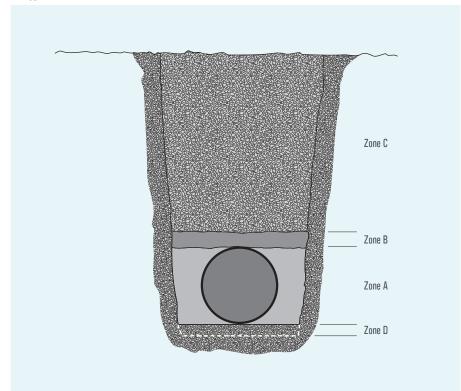
ZONE B

This material provides a cushion of stonefree material to prevent stones or other sharp objects imparting high point loads to the pipeline and is normally compacted to the same degree as Zone A. Where special material is used for Zone A the same material would be used for Zone B.

ZONE C

This remaining fill material builds the trench up to the original ground level and the degree of compaction required is dependent on the resulting allowable surface settlement. Under roads and in other certain locations the load carrying capacity of the ground surface is important and the backfill must be carefully compacted in thin layers to avoid residual settlement. Where backfilling is carried out in trenches across open land the compaction requirements are not normally as stringent and the surface can be slightly built up to allow for a degree of future settlement. The material used would normally be the excavated trench material, however, where very high levels of compaction are required in bad natural ground, imported fill might be required.

ZONE D


Where rock is encountered, a bedding layer, usually of imported granular material, should be used to prevent point loads on the pipe invert.

TRENCH TYPES

ISO requirements allow for five standard trench types which specify

Trench Type	Degree of Compaction	Standard Proctor Density
1	Dumped	< 70%
2	Tamped	>70%
3	Light	>80%
4	Medium	>85%
5	High	>95%

Typical trench backfill zones

Pipeline construction in Riyadh, Saudi Arabia

PIPELINE PRESSURE TESTING

Pipelines are subjected to site test pressures for the purpose of checking:

- 1 The mechanical soundness and leak tightness of pipes and fittings.
- 2 The leak tightness of joints.
- 3 The soundness of any construction work such as anchorages.

4 The quality of workmanship of the pipelayers and jointers.
All pipelines should be tested before being brought into service. Generally, mains to carry liquids are hydrostatically tested and mains to carry gases are pneumatically tested.

HYDROSTATIC TESTING

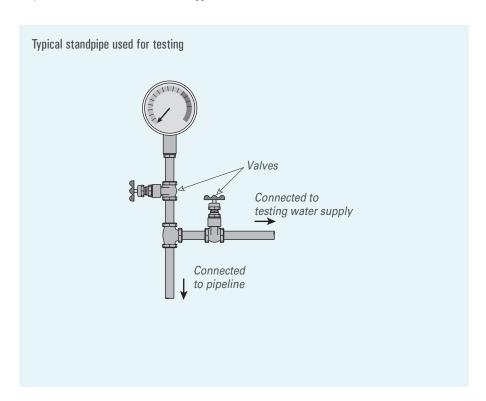
The length of each section to be tested depends on:

- Availability of suitable volumes of water.
- 2 Number of joints to be inspected.
- 3 Difference in elevations between one part of the pipeline and another in the same test section.

Prior to testing, the trench should be backfilled and compacted on the pipe barrels only to prevent the pipeline from moving during testing. Joints may be left accessible for subsequent examination. Concrete in all thrust blocks should be cured before any hydrostatic test is carried out. End caps or blank flanges can be used to seal the line. The sealed end should be temporarily anchored securely. Filling of the test section should be at a slow rate to ensure displacement of all air through vents at high points. An allowance should be made for the slow absorption of water by the concrete lining. This can be offset by allowing a 24 hour soaking period before testing.

Water should be pumped in until the test pressure is reached. As a guide, water loses one thousandth (i.e. 1/1000) of its volume for each 2 MPa of pressure applied, for example a section of main holding 1000 litres completely filled with water would require an additional 2.25 litres to be pumped in to raise the pressure to 4.5 MPa, assuming the volume of the main does not increase due to stretch (bulk modulus of elasticity of water is approximately 2 x 109 N/m2). The test pressure should be measured at the lowest point of the section under test or a static head allowance between the lowest point and the point of measurement should be made to ensure that the required test pressure is not exceeded. If the pressure has dropped at the end of the test period, the quantity of water required to increase the pressure to the original test pressure should be established. For normal installations it is considered satisfactory if the quantity of water added

does not exceed 0.1 litres per millimetre of pipe diameter per kilometre of pipeline for 24 hours for each 30 metres head of pressure. The site test pressure will normally be specified in the relevant contract documents. Maximum recommended site test pressures for ductile iron pipelines are shown in the Pipeline Component Data section (see pages 14 and 15).


AIR TESTING OF WATER MAINS

On occasions when water is not available for testing, air is recommended. This test is to prove the tightness of the joints rather than the full strength of the pipeline. Normally, a pneumatic test with air pressure not exceeding 0.21 N/mm2 (30 lbf/in2) may be used. Owing to the compressibility of air, large volumes have to be introduced into the pipeline to slightly raise the pressure and consequently large volumes must escape to significantly reduce the pressure. Safety considerations should be strictly observed during all air tests. It is difficult to easily detect leaks in air pressurised mains unless in water-logged

ground. Soap solution can be used to examine individual joints. It is normal to allow the pipeline to remain at the test pressure for at least 24 hours. Extended testing periods may be required for larger diameter pipelines. An allowance should be made for temperature and atmospheric pressure variations when measuring any reduction in applied pressure.

COMMISSIONING WATER PIPELINES

Where a hydrostatic test has been applied the test water should be drained from the line. A pipeline which will carry potable water should be swabbed and sterilised with chlorinated water. After standing for the prescribed period, the water should be tested for residual chlorine to ensure sterilisation has been achieved. Potable water may then be used to displace the chlorinated water. The pipeline should not be put into service until bacteriological tests of water delivered at the end of the pipeline show that a satisfactory potable standard has been achieved.

METRIC UNITS

Prefixes used to form the names and symbols of SI units used in these conversion tables are given below.

Prefix	SI	Factor by which Base Unit is Multiplied		
tera	T	1012	= 1 000 000 000 000	
giga	G	109	= 1 000 000 000	
mega	M	106	= 1 000 000	
kilo	k	10 3	= 1 000	
hecto*	h	102	= 100	
deka*	da	10	= 10	
deci*	d	10-1	= 0.1	
centi*	С	10-2	= 0.01	
milli	m	10-3	= 0.001	
micro	m	10-6	= 0.000 001	
nano	n	10.9	= 0.000 000 001	
pico	р	10 -12	= 0.000 000 000 001	
femto	f	10 -15	= 0.000 000 000 000 001	
atto	a	10 -18	= 0.000 000 000 000 000 001	

^{*}These multiples with corresponding names and symbols are not preferred and their use should be limited.

COMMON APPROXIMATE CONVERSIONS

Pressure N/mm2	=	1 MPa
1 psi	=	6.9 kPa
1 atmosphere	=	101.325 kPa
	=	10.33 m head of water
	=	1 bar
	=	760 cm Hg
1 kg	=	2.2 lb
1"	=	25.4 mm
1 UK gallon	=	4.55 I
1 kg	=	9.81 N
1 UK gallon	=	1.2 US gallon
1 m3	=	1000 l = 1 kl
1 Joule	=	1 Nm
1 kN/m	=	1 N/mm

RULES OF THUMB

Headloss	а	1/ D 2				
----------	---	---------------	--	--	--	--

USEFUL METRIC UNITS WITH IMPERIAL CONVERSIONS

Acceleration					
1 ft/s2	0.3048	m/s2			
Area					
1 in2	6.4516	cm2			
1 ft2	0.092903	m2			
1 yd2	0.836127	m2			
1 acre	4046.86	m2 = 0.404686 ha			
1 sq mile	2.58999	km2 = 258.999 ha			
Calorific Value or Specific I	Enthalpy				
1 Btu/ft3	37.2589	kJ/m3			
1 Btu/lb	2.326	kJ/kg			
1 cal/g	4.1868	J/g			
1 kcal/m3	4.1868	kJ/m3			
Density					
1 lb/ft3	16.0185	kg/m3			
1 lb/UK gal	99.7763	kg/m3			
1 lb/US gal	119.826	kg/m3 = 0.1198 kg/l			
1 slug/ft3	515.379	kg/m3			
1 ton/yd3	1328.94	kg/m3			
1 lb/in3	27680	kg/m3			

Dynamic Viscosity		
1 lb/ft s	1.48816	kg/m s
Electric Stress		
1 kV/in	0.039370	kV/mm
Energy, Heat or Work		
1 erg	10-7	J
1 hp h (horsepower hour)	2.68452	MJ
1 thermie		
= 10 cal	4.1855	MJ
1 therm		
= 100 000 Btu	105.506	MJ
1 therm		
1 cal	4.1868	J
1 Btu	1.05506	kJ
1 kWh	3.6	MJ

Force or Weight						
1 dyne	10-3	N				
1 pdl (poundal)	0.138255	N				
1 ozf (ounce)	0.278014	N				
1 lbf	4.44822	N				
1 kgf	9.80665	N				
1 tonf	9.96402	kN				
FORCE OR WEIGH	FORCE OR WEIGHT PER UNIT LENGTH					
1 lbf/ft	14.5939	N/m				
1 lbf/in.	175.127	N/m				
1 tonf/ft	32.6903	kN/m				
FORCE (WEIGHT) I	PER UNIT AREA OR	PRESSURE OR STRESS				
1 pdl/ft2	1.48816	N/m2				
1 lbf/ft2	47.8803	N/m2				
1 mm Hg	133.322	N/m2				
1 in H ₂ 0	249.089	N/m2				
1 ft H ₂ 0	2989.07	N/m2				
1 in. Hg	3386.39	N/m2				
1 lbf/in2	6.89476	kN/m2				
1 bar	= 105	N/m2				
1 std.						
atmosphere	101.325	kN/m2 = 1.01325 bar				
1 tonf/ft2	107.252	kN/m2				
1 tonf/in2	15.4443	MN/m ₂ = 1.54443 hectobar				
1 mm H ₂ 0	= 9.8067	N/m2 (= g)				
Specific Weight						
1 lbf/ft3	157.088	N/m3				
1 lbf/UK gal	978.471	N/m3				
1 tonf/yd3	13.0324	kN/m3				
1 lbf/in3	271.447	kN/m3				
Gas Constant						
1 ft lbf/lb R ₀	0.00538032	kJ/kg K				
Heat						
Heat Flow Rate						
1 Btu/h	0.293071	W				
1 kcal/h	1.163	W				
1 cal/s	4.1868	W				
Specific Heat Capacity						
1 Btu/lb F°	4. 1868	kJ/kg K				
1 cal/g C°	4.1868	kJ/kg K				
Intensity of Heat Flow	Rate					
1 Btu/ft2h	3.15459	W/m2				
Kinematic Viscosity						
1 ft2/s	929.03 stokes = 0.092903	m2/s				

Length		
1 in	25.4	mm
1 ft	0.3048	m
1 yd	0.9144	m
1 fathom	1.8288	m
chain	20.1168	m
11 mile	1.60934	km
1 International nautical mile	1.852	km
1 UK nautical mile	1.85318	km
Mass		
1 grain	64.7989	mg
1 dram (avoir.)	0.00177185	kg
1 drachm (apoth.)	0.00388793	kg
1 ounce (troy or apoth.)	0.0311035	kg
1 oz (avoir.)	28.3495	g
1 lb	0.45359237	kg
1 lb	0.45359237	kg
1 slug	14.5939	kg
1 sh cwt (US hundredweight)	45.3592	kg
1 cwt (UK hundredweight)	50.8023	kg
1 UK ton	1016.05	kg
1 short ton	907.185	kg
Mass per Unit Length		
1 lb/yd	0.496055	kg/m
1 UK ton/mile	0.631342	kg/m
1 UK ton/1000 yd	1.11116	kg/m
1 oz/in	1.11612	kg/m
1 lb/ft	1.48816	kg/m
1 lb/in	17.8580	kg/m
MASS PER UNIT AREA		
1 lb/acre	1.12085x10 ₋₄	kg/m2
1 UK cwt/acre	0.0125535	kg/m2
1 oz/yd2	0.0339057	kg/m2
1 UK ton/acre	0.251071	kg/m2
1 oz/ft2	0.305152	kg/m2
1 lb/ft2	4.88243 kg/m2	
1 lb/in2	703.070 kg/m²	
1 UK ton/mile2	3.92298x10-4	kg/m2
		1
Mass Flow Rate		
Mass Flow Rate 1 lb/h	1.25998x10-4	kg/s

Moment, Torque or Coup	le		
1 ozf in (ounce-force inch)	0.00706155	Nm	
1 pdl ft	0.0421401	Nm	
1 lbf in	0.112985	Nm	
1 lbf ft	1.35582	Nm	
1 tonf ft	3037.03	Nm = 3.03703 kNm	
2nd Moment of Area			
1 in4	41.6231	cm4	
1 ft4	0.00863097	m = 86.3097dm4	
Moment of Inertia			
1 lb ft2	0.0421401	kg m2	
1 slug ft2	1.35582	kg m2	
Plane Angle			
1 rad (radian)	57.2958°		
1 degree	0.0174533 rad = 1.1111 grade		
1 minute	2.90888x10-4 rad = 0.0185 grade		
1 second	4.84814x10.6 rad = 0.0003 grade		
Power			
1 hp = 550 ft lbf/s	0.745700	kW	
1 metric horsepower (ch, PS)	735.499	W	
Specific Entropy			
1 Btu/lb R ₀	4.1868	kJ/kg K	
Thermal Conductivity			
1 cal cm/cm2s C°	41.868	W/m K	
1 Btu ft/ft2h F°	1.73073	W/m K	
Velocity			
1 in./min	0.042333	cm/s	
1 ft/min	0.00508	m/s	
1 ft/s	0.3048	m/s	
1 mile/h	1.60934	km/h	
1 UK knot	1.85318	km/h	
1 International knot	1.852	km/h	
Velocity of Rotation			
1 rev/min	0.104720 rad/s		

Volume				
1 UK minim	0.0591938	cm3		
1 UK fluid drachm	3.55163	cm ₃		
1 UK fluid ounce	28.4131	cm3		
1 US fluid ounce	29.5735	cm ₃		
1 US liquid pint	473.176	cm3 = 0.4732 dm3 (= litre)		
1 US dry pint	550.610	cm3 = 0.5506 dm3		
1 Imperial pint	568.261	cm3 = 0.5683 dm3		
1 UK gallon	4.54609	dm3		
1 US gallon	3.78541	dm3		
1 in ₃	16.3871	cm ₃		
1 ft3	0.0283168	m3		
1 yd3	0.764555	m3		
Specific Volume				
1 in3/lb	36.1273	cm3/kg		
1 fts/lb	0.0624280	m3/kg		

